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About me

● My name is Matt!

● Postdoctoral researcher  at Swinburne University in 
Melbourne
○ Submitted a thesis 3 weeks ago so I’m a 

post-doc without the doc

● Love all things millisecond pulsars, pulsar timing 
arrays and gravitational waves

● More than anything, pulsar noise and gravitational 
waves is what really excites me

● I also enjoy doing a lot of things very badly
○ Hiking / travelling / snowboarding / surfing / 

running / music



What, how, why?

Statistics are separated into two broad camps:

● Frequentist: p(d|h) 
○ The likelihood of observing the data d given the 

model h

● Bayesian: p(h|d,H) 
○ The likelihood of observing the model h given 

data d under hypothesis H

Both can give reasonable results, but in pulsar timing 
we prefer to use Bayesian statistics. 



Why Bayes?

In the frequentist landscape, the signal is fixed but the data is considered random.

In the Bayesian landscape, the data is recorded (not random) but the signals are unknown 
and need to be inferred.

In pulsar timing, we are largely unaware of what signals are present in the data, leading us to 
require a Bayesian approach (with some frequentist techniques sprinkled in).



Measurements as a probability distribution

Measurements always come with uncertainty

• Measuring the mass of “Practical statistics for 
Astronomers”

• Measurement precision is 1g or 0.1g 
depending on the scale.

• Uncertainty is related to this precision.
• Measurement uncertainty depends on 

the sampling distribution
•

Error and uncertainty, relate to accuracy and 

precision respectively

608g measurement 608.5g measurement



Uncertainty and probability density functions (PDFs)

● Every measurement of a random 

variable can be described by a 

probability distribution that describes 

where the true value is likely to be.

● A model of this distribution, with a 

normalised area, is a probability density 
function (PDF)



Uncertainty and probability density functions (PDFs)

● Every measurement of a random 

variable can be described by a 

probability distribution that describes 

where the true value is likely to be.

● A model of this distribution, with a 

normalised area, is a probability density 
function (PDF)

● A common PDF is the normal 

distribution
○ Also called Gaussian or “Bell Curve”



Understanding the normal distribution (notebook)

An uncertainty (standard error), and a model PDF (e.g. normal), 
determines the confidence interval of measurements

● The “68-95-99.7” rule
○ 68% of the area is within 1σ from μ
○ 95% of the area is within 2σ from μ
○ 99.7% of the area is within 3σ from μ

In VM at: 
~/exercices/lec4_data_analysis/data_analysis_model_fitting.ipynb

Run command “jupyter-notebook”



Least squares fitting (e.g. in tempo2)

● Residual = Data - Model
● Least-squares fitting minimises the weighted, 

squared residual
● The chi-squared value is a weighted sum of the 

squared deviations:

● Measurements xi

● Model predictions mi

● Uncertainties 𝝈i



A Gaussian likelihood function

Transitioning to Bayesian inference, the data are described by a 

likelihood. This is where the PDF of the data is important

● Gaussian (normal) likelihood

● In full, this comes from the equation for a normal PDF.

● Assume each measurement uncertainty describes a normal 

distribution



Bayes Theorem
Credit: Neil Cornish

Initial understanding New observations Updated understanding

Prior Likelihood Posterior

The primary aim of modern Bayesian inference is to construct a posterior distribution (Thrane and Talbot 2018)

P(X | M) on the previous slide



Bayes Theorem
Credit: Neil Cornish

Prior Likelihood Posterior

The primary aim of modern Bayesian inference is to construct a posterior distribution (Thrane and Talbot 2018)

These are related through a normalisation factor (evidence):



Bayesian Inference

● The goal is to find the model that the data favours the most. 
● We can find this by comparing the evidence of the models, giving us a Bayes factor.

For two models A and B we can compare their evidence such that:

“All models are wrong, but 
some are useful.”

- George Box

Bayes Factor

Model A evidence

Model B evidence



Bayesian Inference

If the Bayes factor is greater than unity, the data prefers model A.

Otherwise, it prefers model B.

Note: The true way to do this is to use the “Odds 
ratio”, the product of the Bayes factor and the Prior 
Odds Ratio.

In PTA analyses, the prior odds are usually of unity, so 
the Bayes factor is appropriate.

Bayes Factor

Model A evidence

Model B evidence



How is this done?

Product space sampling techniques are used to construct posterior distributions of the models 
given the data. Commonly these are:

● Markov chain Monte Carlo (MCMC) techniques
○ Direct model comparison is possible so evidence calculation is not required
○ Very fast, but limited in model comparison and exploring multi-modal distributions
○ Attractive because it is trivially parallelisable on computing clusters

● Nested sampling techniques
○ Natively calculates the evidence of the model
○ Very useful for large scale model comparison
○ Can protect against unsampled prior spaces where complicated models are considered



How is this done?

MCMC is the most common in the PTA field 
and is what we use in this workshop

● If you’re interested in setting up nested 
sampling for PTA methods in the future, let 
me know and I can help you down the track!

Credit: Neil Cornish“The PTA analysis pipeline”



Visualising an MCMC sampler

https://chi-feng.github
.io/mcmc-demo/app.ht
ml?algorithm=Random
WalkMH&target=mul
timodal

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=multimodal
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=multimodal
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=multimodal
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=multimodal
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=multimodal


How is this done?

What actually is MCMC?

● Random walk algorithm from x to y, 
with a selection criteria for moving 
forward

● Proposed by Metropolis, developed 
by Hastings

● The jump proposal (q) is important!
○ We want the MCMC to converge to 

the best solution
○ Bad jumps or complex distributions 

can stop this from happening



How is this done?

In order to construct the posterior distributions, a prior range and a likelihood is needed.

The prior range can be selected based on physical expectations, but what about the likelihood?

Steve Taylor’s “The nanohertz gravitational 
wave astronomer”:
https://arxiv.org/pdf/2105.13270.pdf

https://arxiv.org/pdf/2105.13270.pdf


What does this give us?

The aim of the game is to construct the 
posterior distribution

Samples start at a random point, and 
progress towards higher likelihoods.

Eventually, the distribution of samples 
represents the posterior distribution. We 
then look at a “corner plot” of one and 
two dimensional histograms

A “trace” plot shows the progression of 
parameter samples



What does this give us?

The aim of the game is to construct the 
posterior distribution

1D probability 
density distributions 
of each sampled 
parameter

2D probability density 
distribution of both the 
sampled parameters

(Shows how the parameters 
relate to each other)



What does this give us?

The aim of the game is to construct the 
posterior distribution

● Started with 2 definitely well 
constrained parameters

● So let’s add more parameters and 
see if those processes are also 
constrained



What does this give us?

The aim of the game is to construct the 
posterior distribution

● Started with 2 definitely well 
constrained parameters

● So let’s add more parameters and 
see if those processes are also 
constrained

● And more…



What does this give us?

The aim of the game is to construct the posterior 
distribution

● We can keep adding more but let’s not

● The beauty of this modelling technique is it 
let’s us check every possibility in a traceable 
way (if we want to)

● Importantly it lets us see where a model isn’t 
favoured.

Terrible 
unconstrained mess:



What does this give us?

The aim of the game is to construct the posterior 
distribution

● The evidence comparisons and Bayes Factors 
that we mentioned before are your friend

● The MPTA has 85 pulsars and each could 
possibly have ~75 models

● As much as I love pulsars, I don’t want to look at 
6375 possible models

○ Neither do you

Terrible 
unconstrained mess:



Hierarchical analysis

● Start simple, build to 
complexity

● Assumptions will lead to 
incorrect models

The timing residuals of J1909-3744 are on the 
right

I’ve identified three signals in the data which 
are coloured in the middle panel

With the data I have, I’m as correct as I can 
be - but it may not be the truth



Hierarchical analysis
J1747-4036 is a prime example of why 
hierarchical analysis is important

● Frequency averaged residuals with no 
noise reduction

● Noise processes reported in MPTA 2.5YR, 
chromatic noise removed
○ Strong achromatic noise!

● Advanced (hierarchical) noise modelling 
revealed achromatic noise was not 
favoured



Where do gravitational waves come into all of this?

● So far we’ve thought about modelling 
signals in a single pulsar

● We (me) care about modelling an entire 
ensemble of many pulsars

● We want to do this to find the signal of 
gravitational waves

● How does that work?

Credit: Carl Knox



Lightning tour of GW signals in PTAs

What do we think we’re looking for:

● Signals from supermassive black hole 
binaries

● Incoherent superposition of all these 
signals in the observable universe

● We call this a stochastic gravitational 
wave background (SGWB)

Good stuffGreat stuff!

Credit: Andrea N. Lommen (2017)



Lightning tour of GW signals in PTAs

This exists in PTA data in two distinct and 
important ways:

● Statistically identical noise

● Spatially correlated signals



Lightning tour of GW signals in PTAs

This exists in PTA data in two distinct and 
important ways:

● Statistically identical noise

● Spatially correlated signals

STATISTICALLY IDENTICAL

INDEPENDENT REALISATIONS

TIME

Credit: Shannon & Cordes (2010)



Lightning tour of GW signals in PTAs

This exists in PTA data in two distinct and 
important ways:

● Statistically identical noise

● Spatially correlated signals

Angular separation between pulsars (º)
C
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tio

n

“Smoking gun” of a SGWB



Lightning tour of GW signals in PTAs
Does this change how we search for signals?

● Yes - kind of
○ A representation of a  PTA 

covariance matrix is on the right

● Single pulsar noise models (what we 
were looking at before) make up the  
cells on the diagonal

● The statistically identical signal is the 
GWB in the diagonal

● The spatially correlated signal is all the 
other GWB’s

Credit: Taylor et al., 2022



Lightning tour of GW signals in PTAs

What does this look like in PTA data?

● Statistically identical noise

● Spatially correlated signals

A statistically identical signal in the 
MPTA data

Maybe it’s GWs, maybe not



Lightning tour of GW signals in PTAs

What does this look like in PTA data?

● Statistically identical noise

● Spatially correlated signals

The results of the last NANOGrav 
search for a correlated signal

Best published result so far, but not 
definitive just yet

Credit: Agazie et al., 2023



Why is this actually important?
We know at least this so far:

● Bayesian inference is robust compared to 
frequentist 

● Through hierarchical modelling we can 
get as close to the real signals as possible

● Not doing this appropriately creates very 
different inferred signals in the data

● This flows through to a PTA search for GWs

Credit: Reardon et al., 2023



Why is this actually important?

Credit: Reardon et al., 2023

● A definitive detection is right around the 
corner

● It’s better to be safe than sorry when this 
happens, and hierarchical noise 
modelling is safer by far



Summary
● Bayesian inference is your friend!

○ There are tools that have been 
developed to help you do this!

● Hierarchical modelling is a safe way 
forward

● The name of the game is finding 
GWs, modelling the noise correctly is 
important to do this (we think)

● There’s so much we don’t know and 
we need your help! Credit: NASA


