
What is Enterprise?
Is it good?

Noise modelling

● We will be reading in .par and .tim files
into Enterprise to model the noise

● White noise
○ Uncorrelated in time

● Red noise
○ Time-correlated
○ Frequency-independent

● Dispersion measure variations
○ Time-correlated
○ 1/Frequency**2 scaling

● Other noise processes including
○ Exponential dip events
○ Chromatic/band noise

● Soon after we will search for
gravitational waves too!

Enterprise in a nutshell

● Inference tool for pulsar noise analysis and GW searches
● Challenge:

○ Strong covariance between noise processes and GWB
○ Need to search for processes simultaneously

● Identify noise processes in individual pulsars
● Marginalise (analytically or numerically) over nuisance parameters

● Most commonly used tool for nHz-frequency GW searches

Single-pulsar noise analysis
Pure Enterprise!

Imports explained
Pulsar object holds
data, e.g:
ToAs, ephem, flags

“Signals” contains everything needed to
construct a noise model for a pulsar:

Priors, noise model functions, selection
methods, and lots of useful utilities

A custom model function we define

The sampler. We can use lots of samplers
through Bilby later

Setting up a single-pulsar noise analysis in python

● Load in some data for your pulsar(s)

● Creating a noise model
○ Choose selections for noise parameters (e.g. backend-dependent)
○ Choose priors for parameters (can be a constant, which you read-in from a file)
○ Choose noise models, and apply selections and priors
○ Sum all noise models, and apply total noise model to a “PTA” object containing

your pulsar(s)
● Set up sampler (e.g. PTMCMC, or something else via Bilby)

Read arguments from
command-line e.g.

> python singlePsrNoise.py J1643-1224 1 uwl

Timing model

● No selection required because it applies to every ToA
● No prior required as these are determined from a timing model fit
● Marginalise over linear timing model

● Timing model parameters can be sampled
○ (defining some

selections for later)

Choosing to
marginalise over
timing model

White noise

● Selection, priors, and models
Uniform linear prior

Uniform log prior

Selections are by_backend. One white noise
parameter per “-group” flag

Red and DM noise

● Number of Fourier components
● Powerlaw vs “broken-powerlaw”?

Define the total model

Total model is the sum of components
s = tm + wn + dm + rn

Add some exponential dip parameters to
the model for pulsars, if using the
PPTA-DR2 component

Define exponential dip
parameter priors based on
previous studies.

The “waveform” of this model is
what we defined at the start

Exponential dip events

● Changes to the pulsar
magnetosphere.

● Four observed in PPTA-DR2
● J1643-1224

○ High-frequency first
● J1713+0747

○ Two events near freq^-2
○ Third (right) deleted from

PPTA-DR3
● J0437-4715

○ Low-frequency first, freq^-1

Form a “PTA” and sample

The PTA object has useful functions for model
selection, setting up the sampler, and holding
models with multiple pulsars

106 - 107 samples depending on complexity
of data set and model
Common partial PTA: N ~ 1e7 (fixed white)
Common full PTA with correlations:
N ~ 108 (fixed white)

Bilby can replace
these lines

Save parameters to
file for plotting later

Post-processing
● Create plots of the chains
● “Burn” and “thin”

○ Get rid of first N samples, and then take every ith ,
where i is the autocorrelation length of the chain

● Save parameters to .json noise files
○ These can be read-in later, to set constant priors for

future runs.
E.g. for fixed white-noise analyses

makeNoise.py

● Combines multiple chains (if any), burns,
plots, and makes noise .json files.

● Note: Does not thin the chains (action item!)

Noise model comparison
With hypermodel

(Following singlePsrNoiseComparison.py in /fred/oz002/dreardon/ppta_dr3/pipeline/dr3/ppta-dr3)

> python singlePsrNoiseComparison.py J1643-1224 1 test

Noise model comparison

● Unlike nested samplers, the mcmc sampler does not provide the Bayesian
evidence. Instead, model comparison is treated as a parameter estimation
problem through a “hypermodel parameter”, nmodel

● The nmodel parameter toggles between two competing models, and its
posterior distribution is a measure of the “odds ratio”, which is the Bayes
factor multiplied by a prior odds

○ Note: if there is very strong evidence for one model, the alternative may never be sampled.
The number of samples gives only a lower-limit on the Bayes factor

Single-pulsar noise model comparison

● Follow the single-pulsar analysis, but add an alternative model
○ In this case, chromatic noise with scaling f^-4

Same total model as before

Alternative model

Form a “Hypermodel” and sample

● Now we use enterprise_extensions for
the first time

○ The “hypermodel” is convenient for setting
up the sampler

We create a dictionary containing two
PTAs, one for each model, and then
pass this to the hypermodel. It adds the
“nmodel” parameter for us.

It has some shortcuts for setting up the
sampler too

Common noise

(Following commonNoise.py in /fred/oz002/dreardon/ppta_dr3/pipeline/dr3/ppta-dr3)

> python commonNoise.py 1 test

Common noise analysis

● Now we want to read in multiple .par and .tim files and set up a pulsar for
each one

Select a few pulsars

Uncomment to use all
pulsars

Add each pulsar
to a list

Common noise analysis

● We also want to fix white-noise parameters, so we read in the noise files

Save all noise parameters to
one dictionary

Choosing a common noise process

● Use the enterprise_extensions shortcut

● Powerlaw or “broken” powerlaw? Correlations or none?

Remember to
add to the total
model

H-D, monopole,
dipole, or none

Bayesephem?

● Do we want to fit for perturbations in the masses of major planets and of the
orbit of jupiter?

NANOGrav 12.5yr

Loop through pulsars and set constant priors

● For each pulsar, add its model to a list

● Then set constant parameters to the values from the noise dictionary

(code collapsed for
readability)

Append to
model list

Launching to OzStar

#!/bin/bash
#SBATCH --job-name=1_J0437-4715
#SBATCH --output=/fred/oz002/dreardon/ppta_dr3/pipeline/dr3/enterprise/jobs/J0437-4715_1_%J.out
#SBATCH --ntasks=1
#SBATCH --time=48:00:00
#SBATCH --mem-per-cpu=5g

ml anaconda3/2021.05
conda init bash
source ~/.bashrc
conda activate ent15y

cd /fred/oz002/dreardon/ppta_dr3/pipeline/dr3/enterprise
python singlePsrNoiseComparison.py J0437-4715 1 uwl

● Example slurm script below
● Can also launch multiple jobs with enterprise.engage

○ Multiple chains simultaneously for multiple pulsars

“%J” makes the job
name unique

enterprise.engage script can iterate chain
number and/or pulsar name

The plan!
(Discussion time)

● Step 0: Finalise dataset
○ Outliers in J0437-4715
○ Any more jumps?
○ How many FD parameters per pulsar? Any other missing parameters?

● Step 1: Which pulsars have red noise and DM variations?
● Step 2: Determine white noise parameters using best model

○ Which pulsars and which groups need ECORRs?
○ How many components for the red noise? Test with broken powerlaw?
○ Set DM components based on highest frequency = 1/(N days)

● Step 3: First common noise search
○ Fixed white noise
○ Red noise for all pulsars? Same priors and number of components?

● Step 4: Advanced noise modelling
○ Searching for any additional processes (e.g. missing JUMPs, chromatic, excess low-freq)
○ Searching for correlations and adjusting individual pulsar noise models

■ Changing number of components, and adding extra noise terms
● Step 5: Validation via sky/phase scrambles

Steps 1 - 3 are easy
to do using the tools
from this workshop!

Step 4 may require
some new selections
or model functions,
and Bilby

Further reading

● NANOGrav 12.5 year analysis:
https://iopscience.iop.org/article/10.3847/2041-8213/abd401/pdf

● Bayesian inference intro:
https://arxiv.org/pdf/1809.02293.pdf

● PPTA-DR2 analysis:
https://arxiv.org/pdf/2107.12112.pdf

● NANOGrav 12.5 year analysis github page and notebooks:
https://github.com/nanograv/12p5yr_stochastic_analysis

● enterprise_extensions models file:
https://github.com/nanograv/enterprise_extensions/blob/master/enterprise_ext
ensions/models.py

https://iopscience.iop.org/article/10.3847/2041-8213/abd401/pdf
https://arxiv.org/pdf/1809.02293.pdf
https://arxiv.org/pdf/2107.12112.pdf
https://github.com/nanograv/12p5yr_stochastic_analysis
https://github.com/nanograv/enterprise_extensions/blob/master/enterprise_extensions/models.py
https://github.com/nanograv/enterprise_extensions/blob/master/enterprise_extensions/models.py

Workshop 2.0
20th Sept 2022

Where are we currently?

● See also Andrew’s slides:
https://docs.google.com/presentation/d/19mqlgaSa-5Gwet3Zs2p2QdAsmuHuh
wEegIRlzfzl2_c/edit#slide=id.p

● Data set nearly completed (except J0437..)
● Noise models nearly complete (except J0437..)
● Common noise analyses started (without J0437..)

● New data and lots of updated scripts to use:

/fred/oz002/dreardon/ppta_dr3/pipeline/dr3/enterprise/workshop/ppta-dr3

https://docs.google.com/presentation/d/19mqlgaSa-5Gwet3Zs2p2QdAsmuHuhwEegIRlzfzl2_c/edit#slide=id.p
https://docs.google.com/presentation/d/19mqlgaSa-5Gwet3Zs2p2QdAsmuHuhwEegIRlzfzl2_c/edit#slide=id.p

Single pulsar noise model results

● Likely candidates for chromatic noise:
○ J0437, J0613, J1017, J1045, J1600, J1643, J1939

● Likely candidates for low-frequency band noise:
○ As above, plus J1909-3744, J1713+0747

● Just use ECORR for everything
○ White noise will be fixed at small value if not significant

● Use maximum likelihood noise model

● Components. Currently suggesting:
240 days for red and chromatic noise
60 days for DM and band noise

● Optimised for best pulsars - e.g. J1909 had a definite peak here, in uwl and dr2

Latest single-pulsar
noise modelling

J1643-1224

Band noise
Chromatic noise

DM noise
Exponential dips

Red noisemakeNoise.py

will make corner plots for everything
except white noise parameters

Testing noise models

tempo2 general2 plugin

$ tempo2 -output general2 -outfile J1643-1224.out -s "{file} {sat} {bat} {freq} {pre} {post}
{posttn} {err} {tndm} {tndmerr} {tnrn} {tnrnerr}\n" -f J1643-1224.par ../../J1643-1224.tim

enterprise_to_tnest.py to make the par files
Then use, make_plots.py to show the results. Add path to data in the first lines:

Where to write the results

String instructions: What do
you want printed, and how?

Input .par and .tim files. Temponest noise models in .par file

Frequency-averaged
residuals (with ECORR)

Right: Residuals with noise subtracted
for J1643

make_plots.py output (send path to Daniel)

Passes whiteness and Gaussianity

- Fix white noise parameters at these
values

Power spectra visualised

● Andrew Zic produced Cholesky spectra for our pulsars using the dr2 portion

DM subtraction

● Ryan realised that we need to subtract the
DM(t) before doing optimal statistic work

● Also useful for accelerating our common noise
search as we have 2*Npsr fewer parameters!

● Running now (right)

./make_dmoff.sh J1909-3744 dr2

● Creates
./data/dr2/noiseFiles_maxlike/tnest/J1909-3744_dmo.par
and J1909-3744_dmo.tim

● Note: All noise parameters removed from _dmo.par

Single pulsar recipe

$ python singlePulsarNoise.py JXXXX-XXXX 1 dr2

(launch multiple with enterprise.engage)

$ python makeNoise.py JXXXX-XXXX dr2
$ python enterprise_to_tnest.py dr2
$./make_dmoff.sh JXXXX-XXXX dr2

makeNoise.py also does the corner plots now

Then we try commonNoise_os.py

Or singlePulsarNoise_reddm.py

Or uwl/all

Suggested action items:

● Daniel, Ryan, Andrew:
○ Finalise dataset. Check all pulsars for outliers using current best noise models
○ Daniel: Check ECORRs for all pulsars, using fully-averaged dataset. DR2 + UWL J0437
○ Andrew: Using normalised residuals, find outliers in UWL J0437
○ Ryan: Investigate UWL J1022, J2124, J2145

● Andrew:
○ Get break frequencies from power spectra

● Matt:
○ Take a script, e.g. singlePulsarNoise.py and add Bilby compatibility

(e.g. importing minimum functions from bilby_warp)
● Atharva, Axl, Rowina, Valentina, anyone else:

○ Single-pulsar noise analyses: Red+DM only. Band, chromatic, and components investigation
○ Fixed white noise for “all” dataset. Output general2
○ DM-subtracted datasets for Red + DM only
○ Common noise runs using DM-subtracted

Other things to do

● Make a >1GHz (or 960MHz for UWL sub-band) dataset?
○ More compact, and probably no chromatic or band noise!

● Make dr3e?
○ ToAs and noise model unchained from previous analyses - extends to lower frequencies

