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About me

• Postdoctoral researcher at Swinburne University
• Precision pulsar timing
• Searching for gravitational waves
• Studying the ionised interstellar medium 

• I like to run and ride bikes fast and far
• Ironman triathlons
• Ultra marathons

• Also known for getting magnets stuck in my nose
• Neodynium magnets
•  ~0.6 T magnetic field strength!
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Motivation

• Pulsars enable tests of physics
• Gravitational waves
• General relativity
• Matter at extreme density
• Interstellar plasma, neutron star interior and 

magnetosphere, solar system and solar wind, stellar 
astrophysics

• We want to do the bests tests possible
• Need the best telescopes
• Need the best instrumentation 
• Need the best data sets and tools to analyse them

• Q: What does the data actually look like?
 

Credit: David Champion

Schematic representation of Pulsar Timing Array

Telescope -> Receiver -> Backend -> Pulse profiles -> Time-tagging -> Timing residuals -> Physics 3



Telescopes
• Pulsars are faint

• Large size = large sensitivity

• Historically: Large aperture single-
dish telescopes
• Don’t need angular resolution 

• Now:  Interferometers
• MeerKAT/LOFAR/VLA/SKA

• Sites chosen for low radio-
frequency inference

• Works at observing frequencies of 
choice
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MeerKAT, South Africa

Parkes/Murriyang, Australia

FAST, China



Receivers
• "Frontend” – turns radio waves into 

electricity (voltages)

• Choosing observing frequencies 
• Pulsars are brighter at lower frequency
• The sky background is brighter at low 

frequency
• The ionized gas in the interstellar medium 

affects low frequencies. 
• Precision pulsar timing done between 

600 MHz - 3 GHz (50 cm - 10 cm)

• System temperature
• Adds randomness, “noise”, to the data
• The lower the better
• Can’t build expensive cooling systems for 

large arrays
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Credit: Jonas et al. 2016



Receivers

• Bandwidth
• Range of radio frequencies
• MeerKAT:

• UHF: 544 MHz - 1088 MHz
• L-band: 856 MHz - 1712 MHz
• S-band: 1750 – 3500 MHz

• Polarization
• Detect both polarization 

bases of the field

Above: Parkes ultrawide band system:
Should work from 700 MHz -4.2 GHz
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Backends
• Digitise the electric signal (voltages) 

• time series from the frontend 

• Channelise into many small frequency 
channels
• Isolate narrow-band radio-frequency interference

• Data types:
• Voltages -> Save everything and process later
• Search mode -> Channelised high time resolution
• Fold mode -> compact data cube for known 

pulsars. High time resolution in pulse phase
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Pulsar folding

• Pulsars are faint
• For most pulsars observed with 

most telescopes, individual pulses 
are indistinguishable from the noise
• Average together many pulses to 

get a clearer signal

• In pulsar timing, we are studying 
known pulsars
• We have a good model for the 

rotation of pulsar 

Credit: R. Lynch
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Pulse profile

• Linear polarization position 
angle

• White: total intensity
• Red:  linear polarization
• Blue: circular polarization

• Profiles can have 
microsecond time resolution
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Fold mode data cube

• One pulse profile per:
• Frequency channel
• Time sub-integration
• Polarisation

• Sum over polarisation to 
get to total intensity 
“Stokes I”

• Let’s look at some real 
data!
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each point in slab is a pulse profile

psrchive is used to process these data
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Profiles with frequency

• Physics!
• Dispersion

• Interstellar medium disperses radio waves
• Low frequencies arrive later than high

• Scattering / scintillation
• Density fluctuations in the interstellar 

medium cause propagation and interference
• Pulsar intrinsic spectrum

• Pulsars typically brighter at low frequency
• Pulse width changes

• High frequencies come from lower in the 
magnetosphere

• Radio-frequency interference (RFI)
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Profiles with frequency
• Another pulsar profile versus frequency

• the effect of scattering

Channels removed because of interference
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Profiles with time

• Physics!
• Scintillation

• Interference pattern moves as 
the Earth/pulsar/ interstellar 
medium move

• Mode changing
• The pulsar emission changes

• Jitter
• Random pulse shape and 

intensity variations make the 
brightness vary randomly

• Bursts of RFI

15

Right: Parthasarathy
 et al. (2021)



Radio-frequency interference
• MeerKAT is at a relatively radio-quiet site.
• But RFI is everywhere

• Satellites, cell phone, wifi, planes,
radio broadcast, lightning, microwaves

Above: Fraction of time a channel has RFI
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Radio-frequency interference in data

17

Narrow-band Bursts



More profiles

• Average over time and 
frequency
• Pulsars have different shapes

• Depends on spin properties of 
pulsars

• Depends on viewing angle of  
pulsar beam

• Depends on shape of emission 
region

• Narrow pulses provide higher 
timing precision

• Example:  MeerKAT profiles 
of millisecond and recycled 
pulsars

Spiewak et al. (2022)
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Pulsar timing

• We have nice profiles… Now what?
• Time-tagging! When did the pulses arrive?

• Power of pulsar timing technique: 
• Account for every rotation of pulsar over data set

• Assumptions:
• Radio emission is “anchored” to neutron star
• Radio emission is stable:  emission will converge 

to same profile at each epoch
• Notable exceptions: in precessing relativistic binaries

• Signals of scientific interest alter arrival times of 
pulses and don’t distort  pulse shape
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Time tagging

• Match a template to the pulse profile 
observation 
• Shift the template in phase until it best 

matches the data

• Relative to timing model arrival times 
varied show excess white noise

• Millisecond pulsars easily measured 
to less than 1 microsecond
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Time tagging
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• Match a template to the pulse profile 
observation 
• Shift the template in phase until it best 

matches the data

• Relative to timing model arrival times 
varied show excess white noise

• Millisecond pulsars easily measured 
to less than 1 microsecond

This interactive demonstration is available in the virtual machine!



Time tagging

• Cross correlate observation with 
noise-free template
• Shift the template in phase until it 

matches the data

• Relative to timing model arrival 
times varied show excess white 
noise
• Millisecond pulsars easily 

measured to less than 1 
microsecond

TOA (MJD) 58186.821751361541342 
Error (microsec) 0.029 22



ToA uncertainty

• What properties of telescope/receiver/pulsar 
give the best ToAs?
• Best millisecond pulsars can be time-tagged to 

10 nanoseconds uncertainty! 
• However, measurements often show excess noise
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Jitter noise in J1603-7202
(Parthasarathy et al. 2021)



Saving times of arrival (ToAs)

• Measured ToAs are saved to a text file (.tim file) with flags describing 
the observation

Pulsar timing data sets often have thousands of ToAs

File name Frequency (MHz) ToA (MJD) Uncertainty (us) Telescope Flags
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Timing residuals

• A model is used to predict the 
arrival times
• The model is developed following 

the discovery of a pulsar
• It is always improving with more 

data collected
• Timing residuals = ToAs – model
• Timing residuals reveal physics 

missing from the model. 
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The timing model
• Text file of parameters and

uncertainties (.par file)

• Pulsar spin
• Astrometry (position, motion)
• Dispersion
• Keplerian binary orbit
• Post-Kelperian effects (geometric, 

relativistic)
• Solar wind / solar system
• Instrumental offsets
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Noisy timing residuals
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Observations of millisecond pulsar B1937+21 

Last observation (2018): 674,489,762,880 pulse periods 
after first observation (1984)

Spin noise

Dispersion measure variations in PSR J0437-4715



Summary

The journey of pulsar timing data
• Big radio telescopes in radio-quiet regions observe pulsars 

for minutes to hours

• Receivers transform radio waves to voltages

• A backend system folds data at the pulsar period and saves 
profiles as a function of frequency, time, and polarisation

• Radio-frequency interference (RFI) is removed

• Profile is summed over frequency, time, polarization

• Profile is tagged with a time of arrival by matching a template

• Time of arrival is compared with a model prediction

• Timing residual is analysed for interesting physics missing in 
the model

• Gravitational waves?!

• Pulsars are awesome 29



Bonus: Software to use

• Voltages processed (e.g. folded) with dspsr
• Search mode searched for new pulsars with presto
• Pulse profiles analysed with psrchive
• Timing residuals and (least squares) timing model fit 

in tempo2 or pint
• Stochastic (random) processes, and timing model fit with Bayesian 

inference with temponest or enterprise
• Gravitational wave detection enterprise
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