Understanding > pulsar data

Daniel Reardon (Swinburne/OzGrav)

Many slides from Ryan Shannon and James McKee

-----OzGrav-

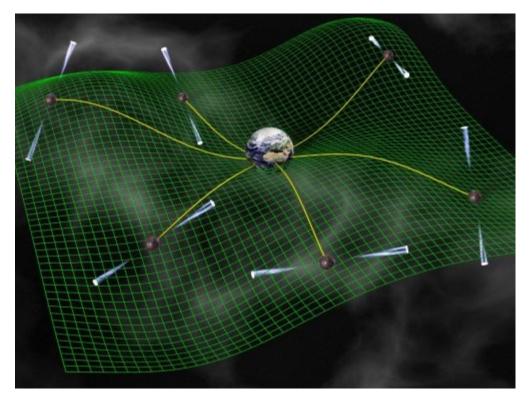
About me

- Postdoctoral researcher at Swinburne University
 - Precision pulsar timing
 - Searching for gravitational waves
 - Studying the ionised interstellar medium
- I like to run and ride bikes fast and far
 - Ironman triathlons
 - Ultra marathons
- Also known for getting magnets stuck in my nose
 - Neodynium magnets
 - ~0.6 T magnetic field strength!

Astrophysicist gets magnets stuck u nose while inventing coronavirus de Coronavirus de Australian Dr Daniel Reardon ended up in hospital after inserting magnets in his nostrils while building a necklace that warns you

when you touch your face Sign up for Guardian Australia's daily coronavirus email Follow Australia coronavirus live news and updates

Follow live global coronavirus updates



▲ Astrophysicist Daniel Reardon was playing around with powerful neodymium magnets while tryin coronavirus safety device and managed to get them stuck in his nose. Photograph: Supplied by Dani

Motivation

- Pulsars enable tests of physics
 - Gravitational waves
 - General relativity
 - Matter at extreme density
 - Interstellar plasma, neutron star interior and magnetosphere, solar system and solar wind, stellar astrophysics
- We want to do the bests tests possible
 - Need the best telescopes
 - Need the best instrumentation
 - Need the best data sets and tools to analyse them
- Q: What does the data actually look like?

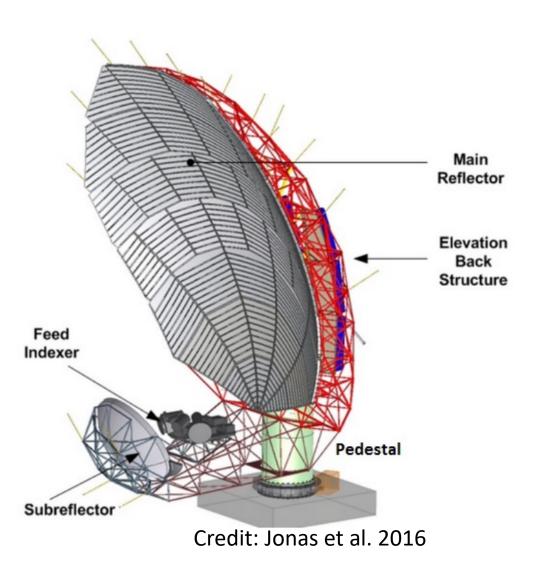
Schematic representation of Pulsar Timing Array

Credit: David Champion

3

Telescopes

- Pulsars are faint
- Large size = large sensitivity
- Historically: Large aperture singledish telescopes
 - Don't need angular resolution
- Now: Interferometers
 - MeerKAT/LOFAR/VLA/SKA
- Sites chosen for low radiofrequency inference
- Works at observing frequencies of choice



Receivers

- "Frontend" turns radio waves into electricity (voltages)
- Choosing observing frequencies
 - Pulsars are brighter at lower frequency
 - The sky background is brighter at low frequency
 - The ionized gas in the interstellar medium affects low frequencies.
 - Precision pulsar timing done between 600 MHz - 3 GHz (50 cm - 10 cm)
- System temperature
 - Adds randomness, "noise", to the data
 - The lower the better
 - Can't build expensive cooling systems for large arrays

$$\Delta S_{\rm sys} = \frac{T_{\rm sys}}{\sqrt{n_{\rm p} t_{\rm obs} \Delta f}}$$

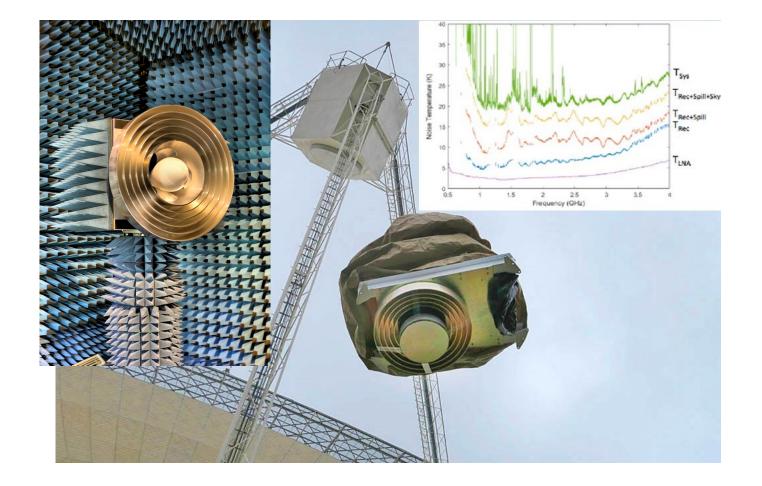
*T*_{sys} = system temperature (20 K) *n*_p = number of polarisations (2)

 t_{obs} = integration time (1 hour)

 Δf = bandwidth (500 MHz)

UNIVERSITY O

SWINBUR * NE *

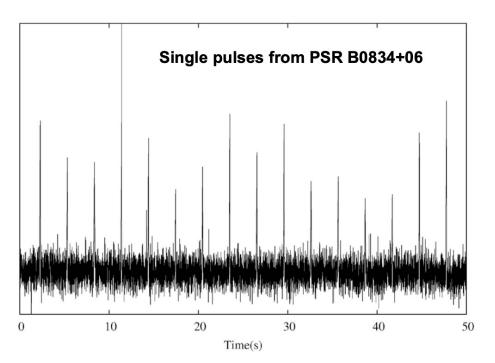

Receivers

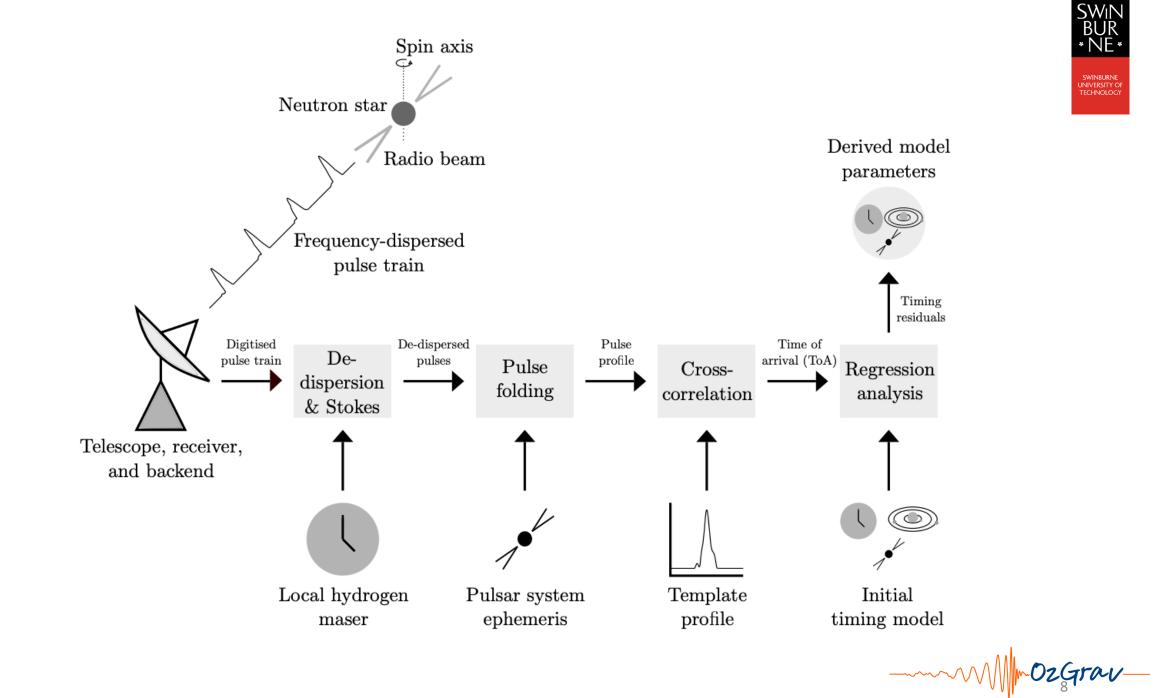
Bandwidth

- Range of radio frequencies
- MeerKAT:
 - UHF: 544 MHz 1088 MHz
 - L-band: 856 MHz 1712 MHz
 - S-band: 1750 3500 MHz

Polarization

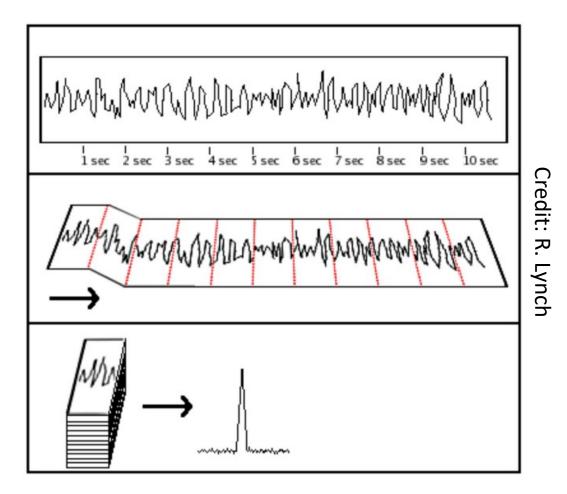
 Detect both polarization bases of the field


Above: Parkes ultrawide band system: Should work from 700 MHz -4.2 GHz


SWINBURNE * NE *

Backends

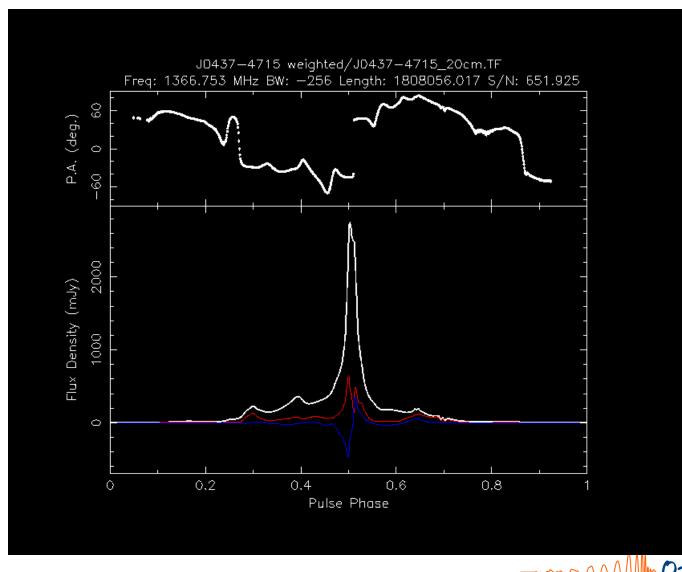
- Digitise the electric signal (voltages)
 - time series from the frontend
- Channelise into many small frequency channels
 - Isolate narrow-band radio-frequency interference
- Data types:
 - Voltages -> Save everything and process later
 - Search mode -> Channelised high time resolution
 - Fold mode -> compact data cube for known pulsars. High time resolution in pulse phase



Pulsar folding

Pulsars are faint

- For most pulsars observed with most telescopes, individual pulses are indistinguishable from the noise
- Average together many pulses to get a clearer signal
- In pulsar timing, we are studying known pulsars
 - We have a good model for the rotation of pulsar

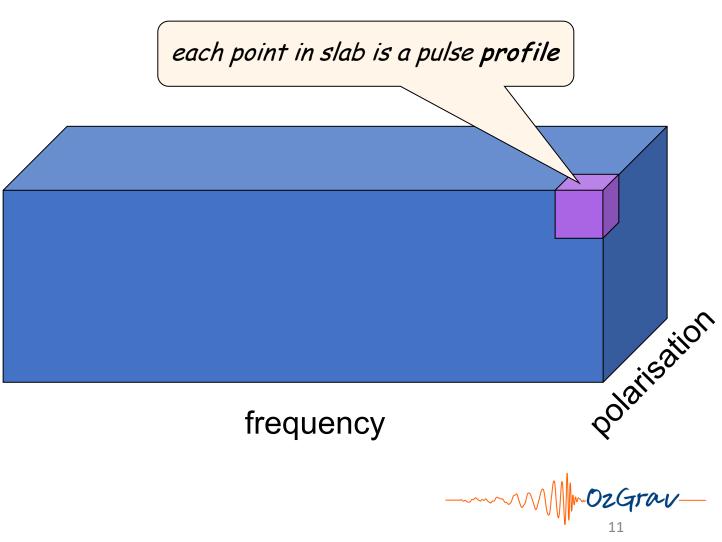


SWINBURNE UNIVERSITY OF TECHNOLOGY

Pulse profile

• Linear polarization position angle

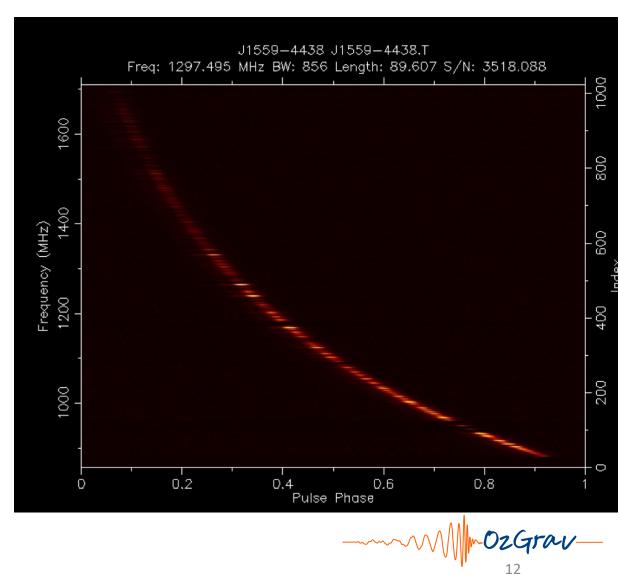
- White: total intensity
- Red: linear polarization
- Blue: circular polarization
- Profiles can have microsecond time resolution



Fold mode data cube

time

- One pulse profile per:
 - Frequency channel
 - Time sub-integration
 - Polarisation
- Sum over polarisation to get to total intensity "Stokes I"
- Let's look at some real data!


psrchive is used to process these data

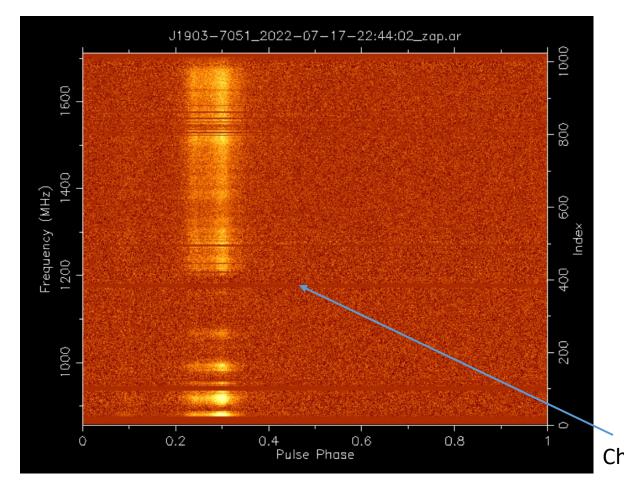
Profiles with frequency

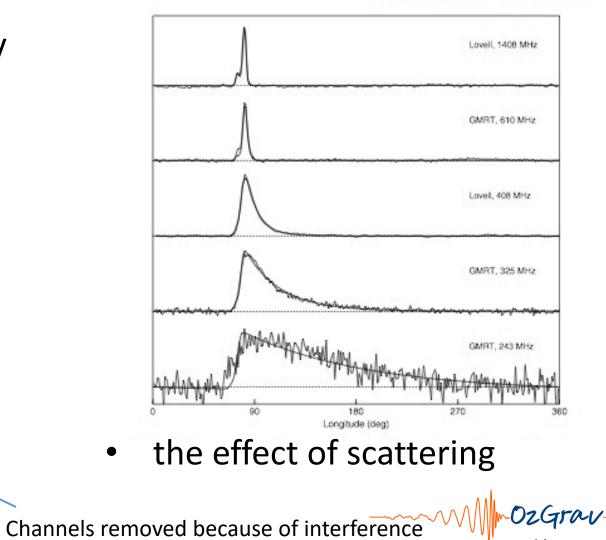
- Physics!
 - Dispersion
 - Interstellar medium disperses radio waves
 - Low frequencies arrive later than high
 - Scattering / scintillation
 - Density fluctuations in the interstellar medium cause propagation and interference
 - Pulsar intrinsic spectrum
 - Pulsars typically brighter at low frequency
 - Pulse width changes
 - High frequencies come from lower in the magnetosphere
- Radio-frequency interference (RFI)

Profiles with frequency

• Physics!

- Dispersion
 - Interstellar medium disperses radio waves
 - Low frequencies arrive later than high
- Scattering / scintillation
 - Density fluctuations in the interstellar medium cause propagation and interference
- Pulsar intrinsic spectrum
 - Pulsars typically brighter at low frequency
- Pulse width changes
 - High frequencies come from lower in the magnetosphere
- Radio-frequency interference (RFI)

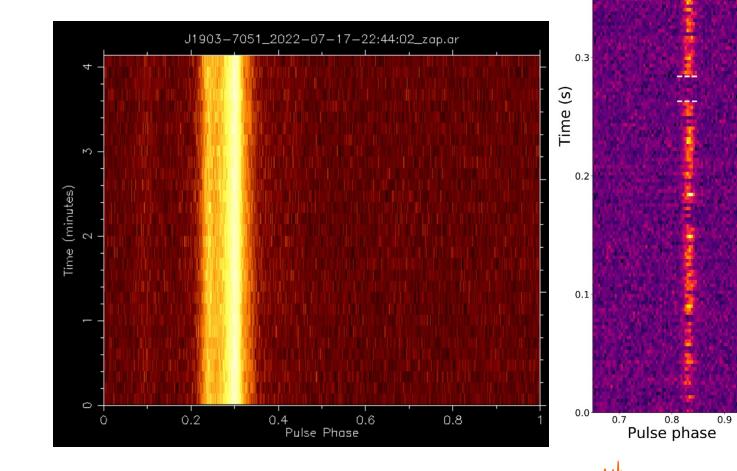




O. Löhmer et al .: Frequency evoluti

Profiles with frequency

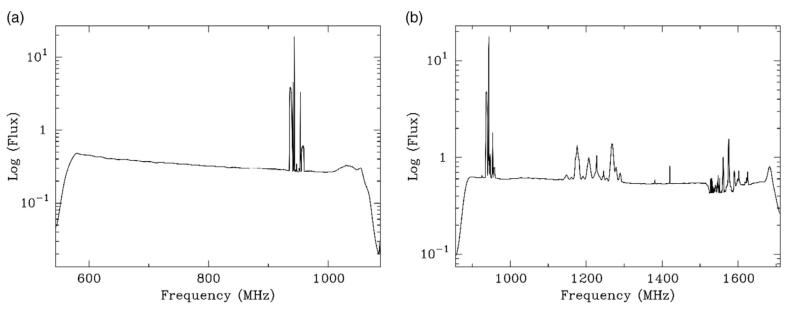
• Another pulsar profile versus frequency

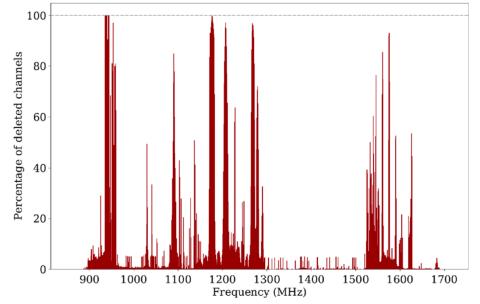


Right: Parthasarathy et al. (2021)

0.4

Profiles with time

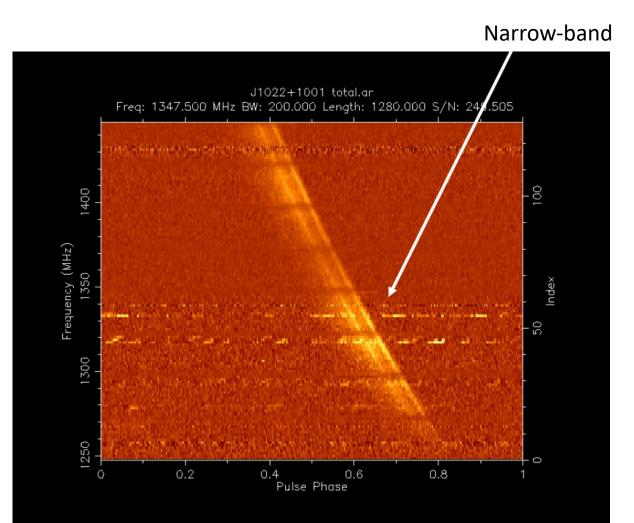

- Physics!
 - Scintillation
 - Interference pattern moves as the Earth/pulsar/ interstellar medium move
 - Mode changing
 - The pulsar emission changes
 - Jitter
 - Random pulse shape and intensity variations make the brightness vary randomly
 - Bursts of RFI

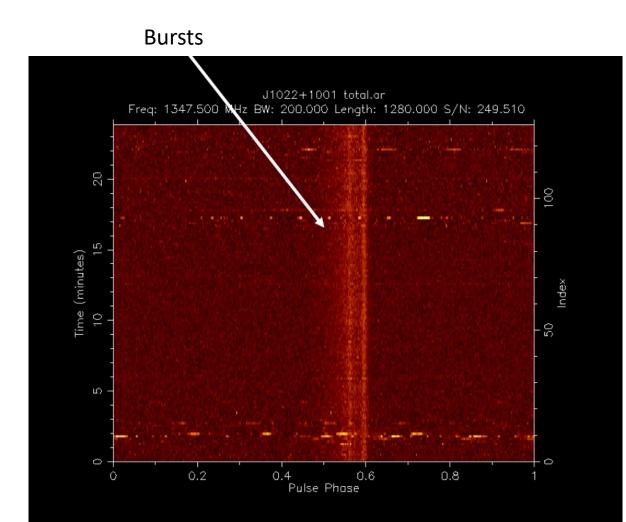


Radio-frequency interference

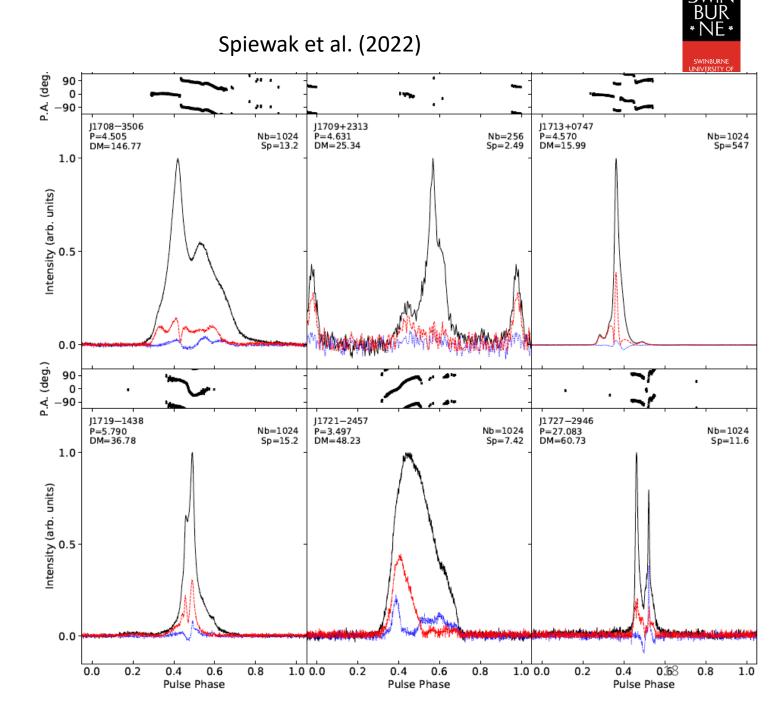
- MeerKAT is at a relatively radio-quiet site.
 - But RFI is everywhere
- Satellites, cell phone, wifi, planes, radio broadcast, lightning, microwaves

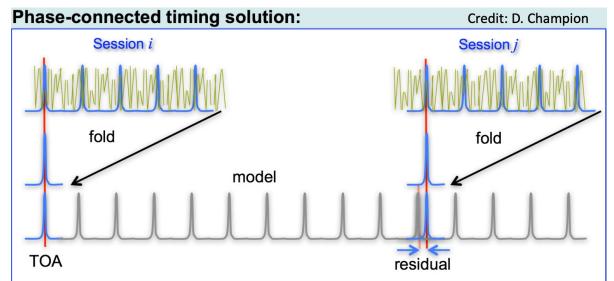
Above: Fraction of time a channel has RFI




UHF receiver bandpass for Stokes I (544–1088 $\rm MHz).$

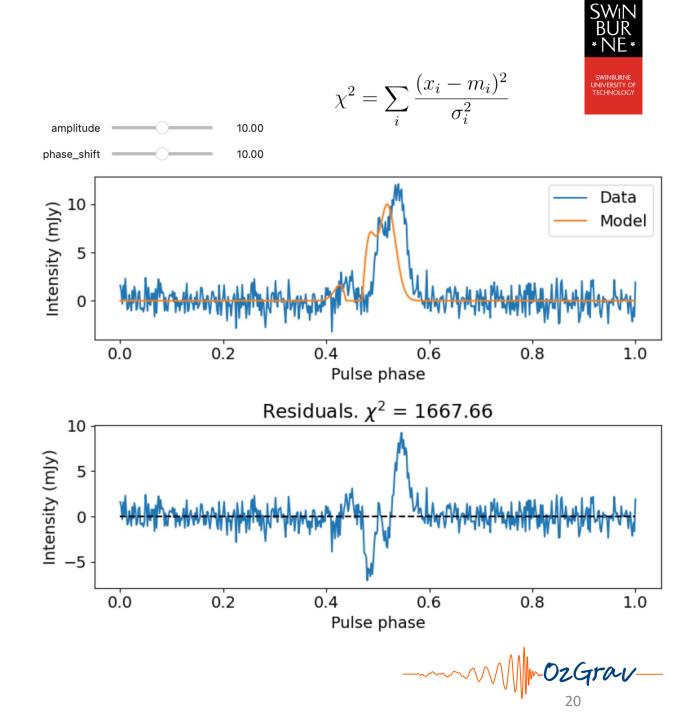
L-Band receiver bandpass for Stokes I (856–1712 MHz)

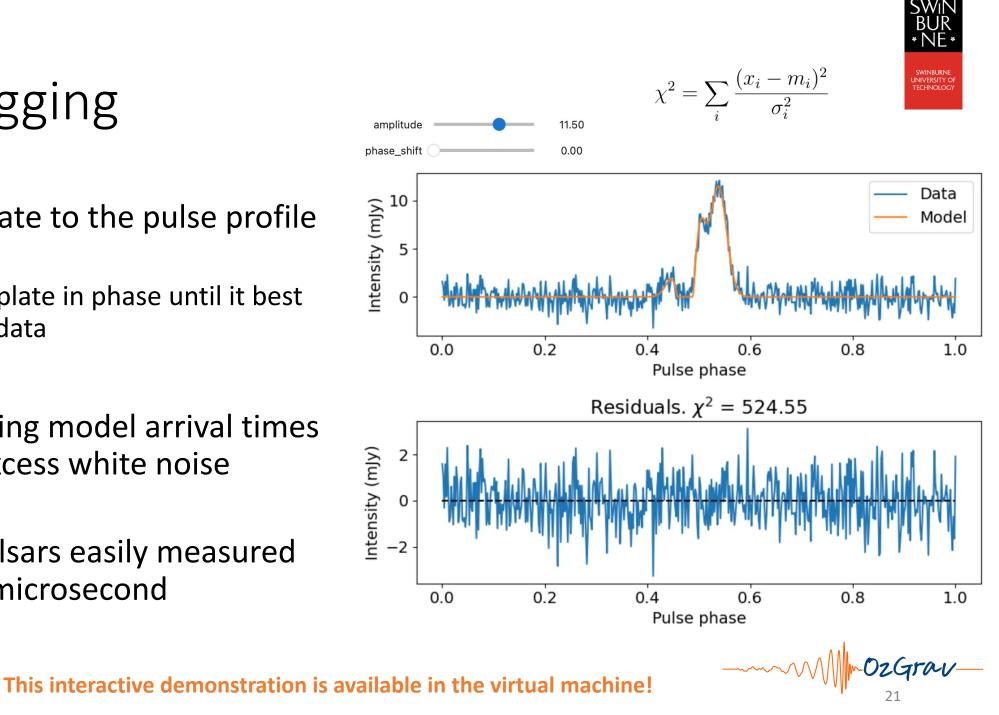

Radio-frequency interference in data


More profiles

- Average over time and frequency
- Pulsars have different shapes
 - Depends on spin properties of pulsars
 - Depends on viewing angle of pulsar beam
 - Depends on shape of emission region
 - Narrow pulses provide higher timing precision
- Example: MeerKAT profiles of millisecond and recycled pulsars

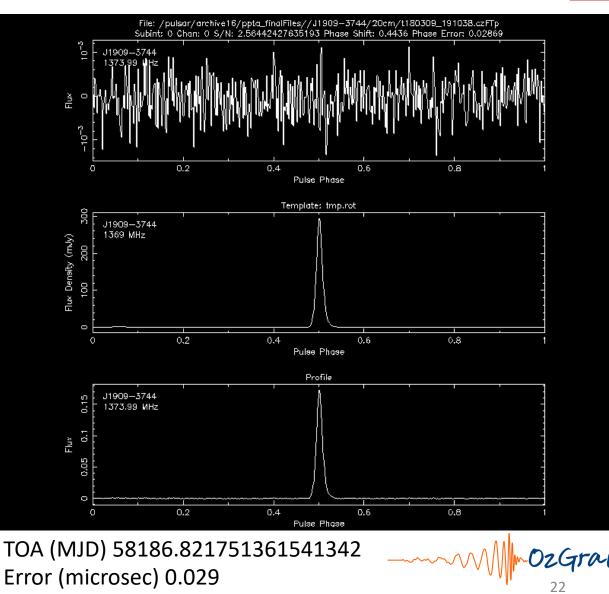
Pulsar timing


- We have nice profiles... Now what?
- Time-tagging! When did the pulses arrive?
- Power of pulsar timing technique:
 - Account for *every rotation* of pulsar over data set
- Assumptions:
 - Radio emission is "anchored" to neutron star
 - Radio emission is stable: emission will converge to same profile at each epoch
 - Notable exceptions: in precessing relativistic binaries
 - Signals of scientific interest alter arrival times of pulses and don't distort pulse shape

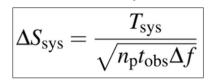

Time tagging

- Match a template to the pulse profile observation
 - Shift the template in phase until it best matches the data
- Relative to timing model arrival times varied show excess white noise
- Millisecond pulsars easily measured to less than 1 microsecond

Time tagging

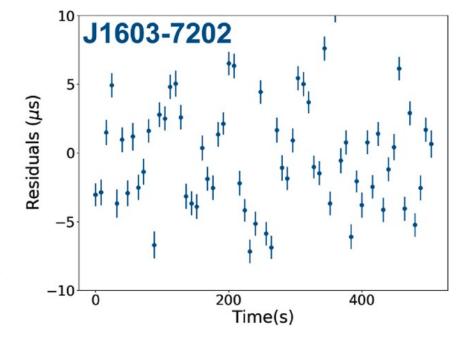

- Match a template to the pulse profile observation
 - Shift the template in phase until it best matches the data
- Relative to timing model arrival times varied show excess white noise
- Millisecond pulsars easily measured to less than 1 microsecond

Time tagging


- Cross correlate observation with noise-free template
 - Shift the template in phase until it matches the data
- Relative to timing model arrival times varied show excess white noise
- Millisecond pulsars easily measured to less than 1 microsecond

SWINBUR * NE *

ToA uncertainty


- What properties of telescope/receiver/pulsar give the best ToAs?
- Best millisecond pulsars can be time-tagged to 10 nanoseconds uncertainty!
- However, measurements often show excess noise

 T_{sys} = system temperature (20 K) t_{obs} = integration time (1 hour) n_p = number of polarisations (2) Δf = bandwidth (500 MHz)

 $\sigma_{\mathrm{TOA}} \simeq rac{S_{\mathrm{sys}}}{\sqrt{t_{\mathrm{obs}}\Delta f}} rac{P\delta^{3/2}}{S_{\mathrm{mean}}}$

 S_{mean} = mean pulsar flux density δ = duty cycle (pulse width/pulse period) *P* = pulse period

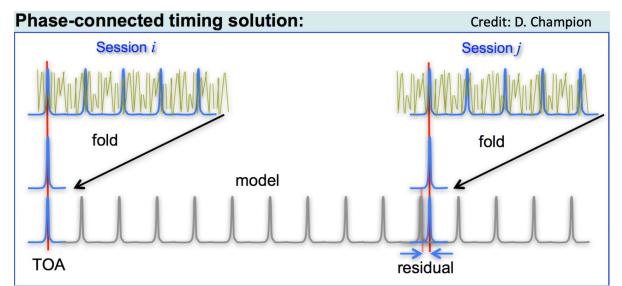
Jitter noise in J1603-7202 (Parthasarathy et al. 2021)

Saving times of arrival (ToAs)

 Measured ToAs are saved to a text file (.tim file) with flags describing the observation

File name Frequency (MHz) ToA (MJD) Uncertainty (us) Telescope Flags .../data/J0437-4715/J0437-4715_2019-09-26-00:14:32_zap.dly 1064.78700000 58752.01305893311695527 0.12100 meerkat -fe KAT -be MKBF -f KAT_MKBF -bw 48.48 -tobs 514.53_ -tmplt .../portraits/2D.J0437-4715.noteb197 -gof 197 -nbin 1024 -nch 58 -chan 3 -snr 902.1

../data/J0437-4715/J0437-4715_2019-09-26-00:14:32_zap.dly 1114.91400000 58752.01305898990095855 0.12900 meerkat -fe KAT -be MKBF -f KAT_MKBF -bw 48.48 -tobs 514.53 -tmplt ../portraits/2D.J0437-4715.noteb206 -gof 206 -nbin 1024 -nch 58 -chan 4 -snr 856.37


../data/J0437-4715/J0437-4715_2019-09-26-00:14:32_zap.dly 1159.12600000 58752.01305898225339064 0.13400 meerkat -fe KAT -be MKBF -f KAT_MKBF -bw 48.48 -tobs 514.53 -tmplt ../portraits/2D.J0437-4715.noteb174 -gof 174 -nbin 1024 -nch 58 -chan 5 -snr 801.79

../data/J0437-4715/J0437-4715_2019-09-26-00:14:32_zap.dly 1210.48200000 58752.01305897440086312 0.13900 meerkat -fe KAT -be MKBF -f KAT_MKBF -bw 48.48 -tobs 514.53_ -tmplt ../portraits/2D.J0437-4715.noteb189 -gof 189 -nbin 1024 -nch 58 -chan 6 -snr 753.54

Pulsar timing data sets often have thousands of ToAs

Timing residuals

- A model is used to predict the arrival times
- The model is developed following the discovery of a pulsar
- It is always improving with more data collected
- Timing residuals = ToAs model
 - Timing residuals reveal *physics* missing from the model.

The timing model

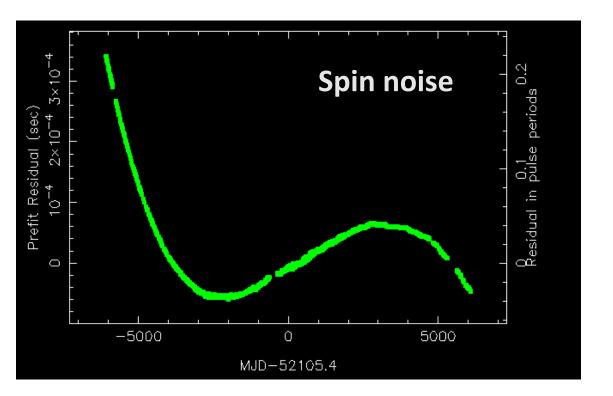
- Text file of parameters and uncertainties (.par file)
- Pulsar spin
- Astrometry (position, motion)
- Dispersion
- Keplerian binary orbit
- Post-Kelperian effects (geometric, relativistic)
- Solar wind / solar system
- Instrumental offsets

PSRJ	J0437-4715		
RAJ	04:37:15.9284818	1	0.00000382517096418891
DECJ	-47:15:09.30337	1	0.00004000662910731565
FØ	173.68794566492871392	1	0.0000000000213307460
F1	-1.7283416842162137716e-15 1 6.4789514604541937119e-21		
PEPOCH	55486		
DM	2.6494613954074667835	1	0.00444313798903972403
DM1	0.0023318955617057713324	1	0.00012470888361493200
PMRA	121.36657820397534661	1	0.00373497701055401689
PMDEC	-71.511013490019942604	1	0.00381447436916187077
PX	7.2760931058394472614	1	0.10002452486604149207
SINI	KIN		
#SINI	0.6755178934561343386		
BINARY	T2		
PB	5.7410463494597433021	1	0.0000000099461930909
то	54530.174096859009204	1	0.00024587415512158971
A1	3.3667146662491504868	1	0.00000000953717971996
OM	1.4750768507315409385	1	0.01542289566425142193
ECC	1.9183533911967741091e-05	1	0.00000000541344040317
PBDOT	4.1814679144564353092e-12	1	2.087482011495630381e-13
OMDOT	0.015527713000870196596		0.00074802286244891381
M2	0.221251021995548673		0.00429760293736832378
KOM	208.34834688199225609		0.83470406733544821876
KIN	137.50561947284209752		0.01604673164654347312
TRES	0.224		
NE_SW	4		
CLK	TT(BIPM2020)		
UNITS	тсв		
TIMEEPH	IF99		
DILATEFREQ	Y		
PLANET_SHAPIRO	Y		
T2CMETHOD IAU2000B			
CORRECT_TROPOSPHERE Y			
EPHEM DE440			
JUMP -MJD_58526_59621_1K -1 -1.1962616822e-06 0			
JUMP -MJD_58550_58690_1K -1 -0.000306243 0			
JUMP -MJD_58526.21089_1K -1 -2.4628e-05 0			
JUMP -MJD_58550.14921_1K -1 2.463e-05 0			
JUMP -MJD_58550.14921B_1K -1 -1.196e-06 0			
	7.14847_1K -1 -4.785e-06 0		26
JUMP -MJD 5857	5.9591 1K -1 5.981308411e-0	07	0

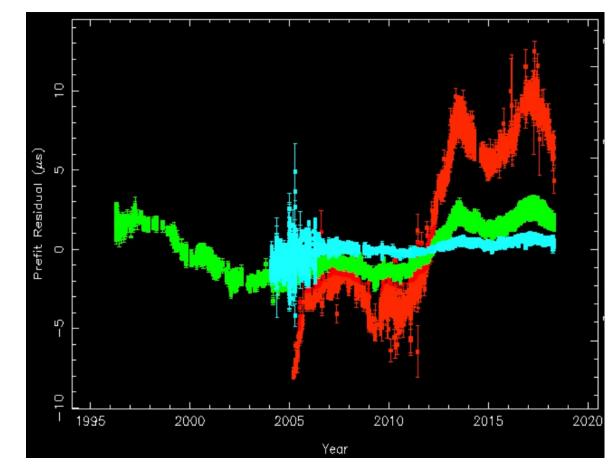
The timing model

- Text file of parameters and uncertainties (.par file)
- Pulsar spin
- Astrometry (position, motion)
- Dispersion
- Keplerian binary orbit
- Post-Kelperian effects (geometric, relativistic)
- Solar wind / solar system
- Instrumental offsets

PSRJ RAJ DECJ -47:15:09.30337 F0 F1 PEPOCH 55486 DM DM1 **PMRA** PMDEC PΧ SINI KIN #SINI BINARY T2 PB ΤØ A1 OM ECC PBDOT OMDOT M2 KOM KIN 0.224 TRES NE_SW CLK TT(BIPM2020) UNITS TCB TIMEEPH **IF99** DILATEFREQ Y PLANET_SHAPIRO Y **T2CMETHOD** IAU2000B CORRECT_TROPOSPHERE Y **EPHEM** DE440 JUMP -MJD_58550_58690_1K -1 -0.000306243 0 -MJD_58526.21089_1K -1 -2.4628e-05 0 -MJD_58550.14921_1K -1 2.463e-05 0 JUMP JUMP -MJD_58550.14921B_1K -1 -1.196e-06 0 JUMP -MJD_58557.14847_1K -1 -4.785e-06 0 JUMP -MJD 58575,9591 1K -1 5,981308411e-07 0


J0437-4715 04:37:15.9284818 0.00000382517096418891 0.00004000662910731565 173.68794566492871392 0.0000000000213307460 -1.7283416842162137716e-15 1 6.4789514604541937119e-21 2.6494613954074667835 0.00444313798903972403 0.0023318955617057713324 0.00012470888361493200 121.36657820397534661 0.00373497701055401689 -71.511013490019942604 0.00381447436916187077 7.2760931058394472614 0.10002452486604149207 0.6755178934561343386 5.7410463494597433021 0.0000000099461930909 54530.174096859009204 0.00024587415512158971 3.3667146662491504868 0.0000000953717971996 1.4750768507315409385 0.01542289566425142193 1.9183533911967741091e-05 1 0.00000000541344040317 4.1814679144564353092e-12 1 2.087482011495630381e-13 0.015527713000870196596 0.00074802286244891381 0.221251021995548673 0.00429760293736832378 208.34834688199225609 0.83470406733544821876 137.50561947284209752 0.01604673164654347312 JUMP -MJD_58526_59621_1K -1 -1.1962616822e-06 0

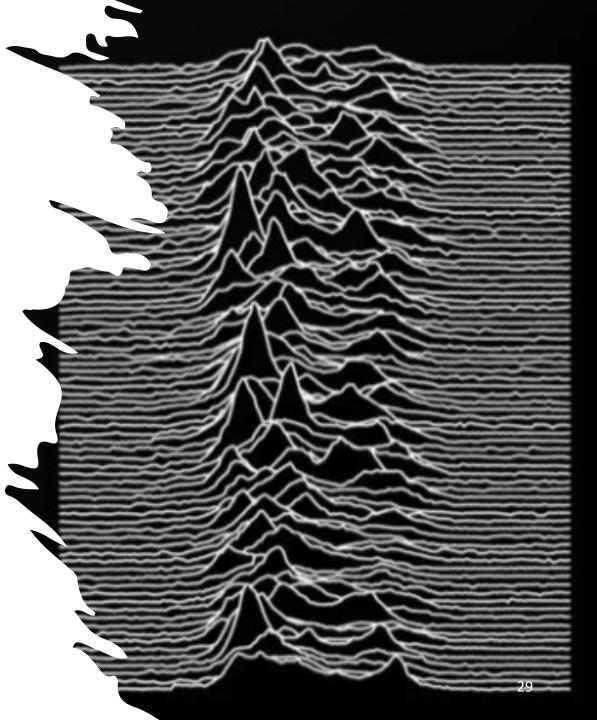
27



Noisy timing residuals

Observations of millisecond pulsar B1937+21

Last observation (2018): 674,489,762,880 pulse periods after first observation (1984)


Dispersion measure variations in PSR J0437-4715

Summary

The journey of pulsar timing data

- Big radio telescopes in radio-quiet regions observe pulsars for minutes to hours
- Receivers transform radio waves to voltages
- A backend system folds data at the pulsar period and saves profiles as a function of frequency, time, and polarisation
- Radio-frequency interference (RFI) is removed
- Profile is summed over frequency, time, polarization
- Profile is tagged with a time of arrival by matching a template
- Time of arrival is compared with a model prediction
- Timing residual is analysed for interesting physics missing in the model
- Gravitational waves?!
- Pulsars are awesome

SWINBUR * NE *

Bonus: Software to use

- Voltages processed (e.g. folded) with <u>dspsr</u>
- Search mode searched for new pulsars with *presto*
- Pulse profiles analysed with *psrchive*
- Timing residuals and (least squares) timing model fit in <u>tempo2</u> or <u>pint</u>
- Stochastic (random) processes, and timing model fit with Bayesian inference with <u>temponest</u> or <u>enterprise</u>
- Gravitational wave detection *enterprise*

