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About me

* Born in small town in Canada

e Ph.D. in the U.S.

* Moved to Sydney, Australia for a
postdoc

 Now faculty at Swinburne in
Melbourne

Main research interests:

* Timing millisecond pulsars to search for
and study) gravitational waves
MeerKAT and Murriyang)

* Fast Radio Bursts (ASKAP)
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Outline

* Introduction to gravitational waves
* How pulsar timing arrays work

e Pulsar Timing Array Science

* The MeerKAT Pulsar Timing Array




Gravitational waves

Fluctuations in curvature that propagate at the speed of light

* Experimentin the lab:
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Using an accurate clock, record when you measure ticks.
Passing gravitational waves contract and expand space
between observer and the clock.

Measure deviation from expected time -> Detected
gravitational waves.
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The gravitational-wave spectrum
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Gravitational-wave geometry

GW Source
e Wavefront 2 : I
ave * Perturbation at the pulsar at a time t,;:
L(1 — cosu) | ulsar 1§ Wavefront 1
4 — * Perturbation at the Earth at a time t.:
t, =te — L(1 — cosp)
Lcosu L
e Measure the difference between the
| Wavefront 2 two:
1(1— cos Earth N ra)
( ,u)d Wavefront 1 Ahl] — hl] (th 'Q') o hl] (te’ ‘Q‘)
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Delay term is purely geometric
t, = te — L(1 — cosu)

e L~ 1 kpc, can potentially see frequency evolution over very large time
scales. . . . . , , . . , ,

Pulsar term Earth Term
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Redshift to residuals

So far only one frequency, one source.

Total red shift obtained by integrating over all frequencies and all sky
z(t) = | df | dQz(t, f,Q)
52

Also we don’t observe redshift. We observe a fluctuation in the residuals left
after subtracting a timing model from data

r(t) —f dt'z(t")
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Sources of GWs in the nHz band

* Sensitive to GWs with frequencies
between 3 and 300 nHz (get TOAs
every week for 10 years)

 Massive Black Hole Binaries
(Jaffe & Backer 2003, Sesana et al.
2008,2013,2015; Ravi et al.
2012,2014,2015)

* Cosmic Strings and Super Strings
(Damour & Vilenkin 2005, Sanidas et
al. 2012, Lentati et al. 2015)

* Early-Universe Signals (Witten 2007,
Caprini et al. 2010, Lasky et al. 2016).
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Types of sources in the nHz band

 Sensitive to GWs with frequencies
between 3 and 300 nHz (get TOAs
every week for 10 years)

 Stochastic backgrounds

 Single sources (Arzoumanian et al
2015, Zhu et al. 2015, Babak et al.
2016, Aggarwal et al. 2019)

e Gravitational wave memory (Wang

et al. 2015, Madison et al. 2015)
M/V\/\N%Ozéfmv




A recipe for producing a GWB

* Black holes formed early in the \/ \/
universe at the centres of the first )}/
galaxies N

* After galaxies merge, black holes \/

dynamically dragged to centre

'1jf\?\. /

* When MBHs get close, they \/
become prodigious emitters of QOIS | \/
GWs \ / N

* After merger, resultant BH gains \[ \/
mass through accretion (Quasar (®) ()
phase) N/

e Process repeats many times for \./ Credit: M. Volonter

each current galaxy (107?)
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Why care about supermassive black holes?

* How dosalaxies form? Why do today’s galaxies look the way they do?
What did the first galaxies look like?

* What is the cause/effect of supermassive black holes and galaxy
evolution?

 When galaxies merge, what happens to their SMBHs?
* Too close together to resolve using optical telescopes.
e Reside in dense environments.

* Gravitational waves enable us to study the centres of galaxies invisible
otherwise!
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One problem..

* Expected length change:
Width of an atomic nucleus on one meter baseline

* Need *very* accurate clock
* Or huge distances...
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The joy of pulsar timing

Phase coherent: sensitive to
effects that only manifest as

585,999,381,787 rotations between first observation
i \ (1984) and a recent observation (2022)

small Doppler shifts

Millisecond pulsars sensitive to
the smallest of perturbations
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Using pulsars to detect Gravitational Waves

Distant: ~ 1 kpc = 3x10'° meters
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A Stochastic Background

Relative Angle Simulated timing residuals

(deg)

180
The stochastic background is the
superposition of GWs from many sources

)
Background induces red power spectrum in E
residuals (more power at lowest frequency
of GWs). %0

0

1 1 1
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A Stochastic Background

Relative Angle Simulated timing residuals

The background is characterized by a
characteristic strain amplitude spectrum
h.(f) with amplitude A (10-*> )and spectral
index a (-2/3).

hlf) = Af°

RMS contributions to residuals ~20 ns
over 5 years: need to combine signal
from a group of pulsars (pulsar timing
array, PTA).

Pulsar timing arrays | Ryan Shannon
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Astrophysical processes that impact GWB amplitude
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Common red process

e Gravitational wave background includes a
contribution that has a spatial correlation,
but also a process that has no spatial
correlation

* This process is expected to be statistically
identical between pulsars

 Different realisation of the same process

Residual TOA (arb.)

* In PTA experiments with small numbers of
pulsars or pulsars with varied levels of S n
sensitivity the first evidence for the GWB Time (arb.)
might be this common red process

W\/\/WWWOzC—fmc/

Four realisations of the same process
(Shannon & Cordes 2010)



Arrival-time deviation correlation

How do we detect a background?
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Problem: Other sources of noise can
look like gravitational waves (e.g.,
pulsar spin noise)

Solution: Search for correlation in
arrival times between multiple
pulsars:

0
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Gravitational waves and pulsar timing

* Signal has quadropolar correlation
between pulsars (pulsar timing array,
PTA)

* Groups working together:

* Europe (EPTA)

* North America (NANOGrav)

e Australia (Parkes PTA; PPTA)

* MeerKAT Pulsar Timing
Array/India/China

* International Pulsar Timing Array
(IPTA)




Gravitational waves and pulsar timing

e Signal has quadropolar correlation

between pulsars (pulsar timing array,
PTA)

* Differences to laser
interferometers/CBC:
* Nanohertz frequency
e Different path to detection
 Ephemeral versus gradual (PTA)

* Single realisation of both signal and
noise

* |Imperative to model "detector
noise” and search for GW
simultaneously

* Only one realization of both
MN\/\/W%OzCTrM/




What has been found so far?

e Concerted efforts in Australia (Parkes

Pulsar Timing Array), Europe
(European Pulsar Timing array) and
North America started in the mid-

2000s.

* Searches have become more sensitive
* Longer timing baselines
e Larger number of pulsars

* More sensitive
instrumentation/observatories Credit: IPTA

MW\/\/W»OzC—(er




Latest gravitational wave searches

Data sets:

* NANOGrav 15-year data set (Agazie et al.
2023)

e 65 pulsars observed with Arecibo, Green Bank, and

 PPTA DR2: 18-year data set (Reardon et al.

Very Large Array telescopes in North America

2023)

30 pulsars observed with Murriyang

e Techniques:

Bayesian model selection using Enterprise

Marginalise over pulsar dependent (red/white)

noise terms

Search for systematic errors in the solar system

ephemeris using Bayesephem
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PPTA data set

26 pulsars
2004-2018

Data release (Zic et al. 2023)
Noise models (Reardon et al.

2023b)

Some common pulsars with
NANOGray, including some of
the best timing pulsars
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Setting the stage

* All PTAs find significant Bayesian evidence for common red process in
their analysis

* Modest evidence for Hellings-Downs correlations

* Side-by-side comparison of PPTA and NANOGrav results

V| \j‘\})f;,ﬂbwch-,m,/:



Search methodology

Is there evidence Is there evidence for a spatially Is there evidence for a

for a common-spectrum correlated y = 13/3 process? second y = 13/3 process

y = 13/3 process? No strong evidence for HD on top of HD?

Yes, strong evidence. correlations, decisive evidence Little evidence either way.

against monopole and dipole.

[ dipole (HDV + dlpole)

<107 O48+00/

12.1+0.1 -
ntrinsio puisar | 1071+ SO ) 220270 | ommen spectnum |2 =22 Horesin
noise only (IRN) CURNY d HDY
noise ( ) 965 with 5 freqs red noise ( )

<108 0.6 + 0.2\

( monopole GDV - monopog
Agazie et al. 2023
W/W\NW‘WOZCT’-&V— gazie et a




Common red noise

NANOGrav

1

YGWB=13/3
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Posterior probability distributions: probability
of a model parameter given the data.

A: amplitude of the CRN

X: spectral index of the CRN




log;(Excess timing delay [s])

Spectrum of common noise

Hellings—Downs spectrum

Power-law posterior ]

== == Median power-law amplitude; y= 13/3 i
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Search for correlations
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Weird things in PPTA data

* Previous upper limits on GWB ~141
inconsistent with loudness of
common red noise signal e
22
O=
<t
S —16 1
&

* Signal appears to be growing in
amplitude with time 17

_18 \ vV \

9 yr slices

2006 2008 2010 2012 2014
Year

Reardon et al. (2023)
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Other recent searches

* EPTA: 20 pulsars

* IPTA DR2: 42 pulsars

 Signal strength depends on
amplitude of GWB

* Searches provide mostly
consistent results in common red
noise

* All provide only modest evidence
for GWB
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Next steps: GW searches

* Detection of GWB will require convincing
detection of Hellings-Downs correlation

* Existing PTAs
e Better characterization of noise
* Extended timing baselines

* International Pulsar Timing Array

 Sensitivity scales strongly with number of
pulsars

e Combine EPTA, NANOGrav and PPTA data sets
* IPTA-DR2 analysis completed
* NANOGrav 9 year data set and PPTA 2015 data set

* |[PTA-DR3
MM/V\AN»»OzC—(er




Improving Sensitivity

Detection of GWB will require convincing
detection of Hellings-Downs correlation

New facilities
* Increase sensitivity
* MeerKAT/FAST

Improved instrumentation

* Wide (radiofrequency) bandwidth
receiving systems

Improvements in algorithms/systems

* Better understand systematics / improve
calibration of the signal

e Coordination between facilities

More pulsars
* Large-area sky surveys for new pulsars

MAN\/\[W\»OzC—(er




MeerKAT Pulsar Timing Array

* Regular observing started in Feb |4 iE

2019
* MeerTime MSP timing:

e ~ 10,000 observations of 190 o
pulsars in ~ 600 hours o Z|im
* Observations with L-band (900-

* Typically observe in standard
pulsar timing “fold” mode
* Occasional observation in

search/baseband mode to study
single pulses

2021 2022 2023

(yr)




MeerTime MSP program: first projects

PA. (deg.)
BB

 Pulsar census (Spiewak et al., submitted)
* Homogenous study of 187 MSPs
* Observe all MSPs at least 4-6 times

Study of MSP emission

* Determine MSPs suitable for monitoring with
MeerKAT and the SKA

* Pulse jitter (Parthasarathy et al. 2021)
* First data release (Miles et al. 2023)

units)

PA. (deg)

;

Spiewak et al., Submitted




MeerTime MSP program: first projects

—— Recovered Clock
—— KIT-UTC(GPS)

* Pulsar census (Spiewak et al., — Rectdun
submitted)

* Homogenous study of 187 MSPs

* Observe all MSPs at least 4-6 times .

0.2

0.01

Clock signals (us)

e Study of MSP emission 02!

e Determine MSPs suitable for monitoring
with MeerKAT and the SKA

* Pulse jitter (Parthasarathy et al. 2021)

Residual (us)

* First data release (Miles et al. 2023)

58600 58800 59000 59200 59400 59600
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Forecasting array sensitivity

Signal to noise ratio
Estimate by S/N (p) by match filtering 8
with Hellings- Downs correlation

Nt Mo Y P2(f)

* Model signals in noise in Fourier '
domain ; S X E
{ Pp, (fi)Pp; (fi)

e Sum over all pulsar pairs (ij) = 1 j= z+1
e Sum over all fluctuation frequencies (k)
* Each channel provides an atom of S/N?

* P,: pulsar noise model
* P,: GW power spectral density

* x;- Hellings-Downs correlation func | I

3
Xij = Z (l — COS(H,'J')) log (l — COS(H,'J')) — g (l — COS(H,'J')) +

W\WV\/WMOZQMV



MeerTime MSP strategy: motivation

* Weak signal: signal dominated

f— M = IQO, c= 'QOyr_‘l, alz 11001'15 -

by measurement noise in cross

correlations
e Fastincrease in S/N

e Strong signal: Dominated by
self noise in cross correlations

10’ o

(p)

* Signal only increases slowly with

time

107 r

* In both regimes the S/N

increases linearly with number

of pulsars

10° 2

Tlyr] 10

Siemens et al. (2013)
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Current observations/strategy

. . Histogram of all PTA TOAs
* Time as many pulsars as possible to

100

T T T LR T T LR |

(median) sub-microsecond precision

* If 1 usis achieved in < 256 s, observe for 256
seconds

* Tailor integration times to achieve 1 us
precision

* Don’t observe pulsars where sub-1 ps takes
longer than ~2000 s.

o
S o

e As of 2023 July: 83 pulsars pass this

e Most are South of 6 <0° o L

w\/\/WWM)zéfmt/




Assessing the array sensitivity

* 80 pulsars can be observed in 11 hours
of integration time (286 hours per year
with fortnightly cadence)

* Compare sensitivity to other PTAs

* Noise models from Goncharov+20 (PPTA)
and Alam+20 (NANOGrav) for red noise

* Create simple IPTA

* Include pulsars from single timing array

which gives “best” precision”
* Assume A,,,: 2x10>
* Level of purported common red noise in
NANOGrav data

WVWWOz&er
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Assessing the array sensitivity

* Initially Increases rapidly because of T T

Dashed: cross

large number of well-timed pulsars [ e Solid: auto

MK-89
NG-47

* Continues to increase rapidly because R
of large total number of pulsars

* Despite shorter timing baselines, MPTA
will be contributing to international
sensitivity on the time scale of :
MeerKAT o T

* Will provide legacy data sets for SKA

2010 2020 2030

NANOGrav and IPTA curve assume Arecibo
N‘_‘W\/\/V\N‘w OZ &rﬂ’l/ MSPs are not observed elsewhere

S/N
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MeerKAT MSP timing update

. Eétze?,ndEd data set: Feb 2019 —Jan Frequency averaged residuals: corrected for DM and stochastic solar wind

e Data reduced using same
approach as in Miles et al. (2023)

[ERY

» Search for astrophysical noise
processes

* DM variations f?

* Scattering noise f*—f*°
* Solar wind |
* Jitter noise Credit: Matt Miles

* Important to have best noise
model in search for gravitational 2019 T (yr) 2023
waves

e Hierarchical inference using Strong achromatic red noise observed in best millisecond pulsars
standard methodology CRN stronger than in older data setss
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MeerKAT MSP timing update

* Extended data set: Feb 2019 — Jan
2023

e Data reduced using same
approach as in Miles et al. (2023)

» Search for astrophysical noise
processes
* DM variations f?
» Scattering noise f4— f*®
e Solar wind
* Jitter noise

* Important to have best noise
model in search for gravitational
waves

e Hierarchical inference using
standard methodology

log10 Acrn

- v = 13/3
Yern = 4.517132 icwe = =

l0g10Acry = —14.34+32%

T T T T
| I I

| |

|

YCRN log10 Acan

Miles, PhD Thesis (2023)
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summary

* Nanohertz gravitational waves provide a
new tool to study the Universe

* Pulsar timing arrays can be used to search
for such signals

* New facilities / longer datasets /more
pulsars will enable us to detect GWs with
pulsars.

* MeerKAT to play pivotal role




