Noise in pulsar timing observations

Ryan Shannon (ARC Future Fellow/Swinburne/OzGrav)

THE UNIVERSITY OF WESTERN AUSTRALIA

Outline

- The joy of pulsar timing
- Noise in pulsar timing data sets
- Finding noise in pulsar timing data sets

-----OzGrav-

SWINBURNE UNIVERSITY OF TECHNOLOGY

Figure 2. 2D posteriors of the amplitude and spectral index of the red-noise parameters for those pulsars with Bayes factors for red noise greater than 100, plus J1713 +0747. The contours are the 50% and 90% credible regions.

The joy of pulsar timing

- Phase coherent: sensitive to effects that only manifest as small Doppler shifts
- Millisecond pulsars sensitive to the smallest of perturbations
- Timing noise: spin irregularities manifest as red noise in arrival times
- h~Δt/T ~ 10⁻³ s/10⁹ s= 10⁻¹²

The joy of pulsar timing

- Enables effects that only cause weak doppler shifts of pulsar to be strongly studied
 - Search for gravitational waves
 - Tests of general relativity
 - Masses of neutron stars
 - Interiors and magnetsopheres as well (glitches/magnetospheric state changes, etc.)
- Best timing: millisecond pulsars
 - Most stable rotation
 - Narrow pulse profiles highest timing precision

Common assumptions in pulsar timing

- Radio emission is "anchored" to neutron star
 - Measures rotational state of pulsar
- Radio emission is stable: emission will converge to same profile at each epoch
 - Notable exceptions precessing relativistic binaries
- Key point: signals of interest alter arrival times of pulses and don't distort pulse shape

MAGIC collaboration

Contributions to Pulsar Arrival Times Pulsar

- Pulsar spindown
- Intrinsic variation in shape and/or phase of emitted pulse
- Reflex motion from companions.
- Pulsar position, proper motion, distance
- Stochastic spindown variations
- Gravitational Waves
- Warm electrons in the ISM
- Solar system

O. Löhmer et al .: Frequency evolut

Deterministic vs. Stochastic Process

- Deterministic system:
 - If initial state is known exactly, future state can be predicted
 - E.g. Pulsar, white dwarf system
- Chaotic system (type of deterministic system)
 - If deterministic system behavior is highly sensitive to initial condition, evolution will show apparent randomness
 - Example: Hyperion
- Stochastic system:
 - System evolution depends on random variables
 - Example CMB, Gravitational Wave Background
- A large portion of the rest of the talk will be devoted to identifying, assessing, and characterizing stochastic processes.

Table 1 PSR J0437-4715 physical parameters

Right ascension, α (J2000)	04h37m15s7865145(7)
Declination, δ (J2000)	-47°15'08"461584(8)
μ_{α} (mas yr ⁻¹)	121.438(6)
μ_{δ} (mas yr ⁻¹)	-71.438(7)
Annual parallax, π (mas)	7.19(14)
Pulse period, P (ms)	5.757451831072007(8)
Reference epoch (MJD)	51194.0
Period derivative, P (10 ⁻²⁰)	5.72906(5)
Orbital period, Pb (days)	5.741046(3)
x (s)	3.36669157(14)
Orbital eccentricity, e	0.000019186(5)
Epoch of periastron, T_0 (MJD)	51194.6239(8)
Longitude of periastron, ω (°).	1.20(5)
Longitude of ascension, Ω (°).	238(4)
Orbital inclination, i (°)	42.75(9)
Companion mass, m_2 (M _{\odot})	0.236(17)
$\dot{P}_{\rm b}(10^{-12})$	3.64(20)
ώ (°yr ⁻¹)	0.016(10)

Example: Deterministic contributions

Timing residuals: Difference between maximum-likelihood model and residuals

Need to refer arrival times to non-inertial frame: Solar System Barycentre.

OzGrav—

What about this?

Power spectral density estimation in one slide

- Oftentimes signals are easier expressed in the "frequency domain" rather than the time domain
 - Sinusoid be expressed by three numbers:
 - Frequency
 - Amplitude
 - Phase
 - Or
 - Frequency
 - Amplitude (cosine)
 - Amplitude (sine)
- Fourier transform (FT):
 - Projection of time series onto harmonic of sinusoids
 - Fast Fourier transform (FFT): efficient algorithm of calculating FT
- Power spectrum
 - Square of Fourier transform
 - Useful if don't care about phase of signals

Classes of stochastic processes

- White Noise (WN)
 - Uncorrelated
 - Flat power spectrum

• Red Noise (RN)

- Correlated noise
- Wide-sense stationary
- Random walks
- "Red Power spectrum" (more power at lower frequency)

Frequency

Band limited noise

- Red power spectrum with cut-offs
- Excess power at certain frequencies

Power Law power spectral density: $P(f) \propto f^{\alpha}$ ($\alpha < 0$)

White noise

- Noise that is uncorrelated on TOA-TOA time scales
- Radiometer (Receiver) noise
- Pulse-shape variations ("jitter")

Timing Error from Pulse-Phase Jitter $U(\phi) \propto \int d\phi' \, f_{\phi}(\phi') a(\phi-\phi')$ $\Delta t_{ m J} = N_i^{-1/2} (1+m_I^2)^{1/2} P \langle \phi^2 angle^{1/2}$ -1/2

$$= N_i^{-1/2} (1+m_I^2)^{1/2} \, P \left[\int d\phi \, \phi^2 f_\phi(\phi)
ight]^{1/2}$$

- f_{ω} = PDF of phase variation
- $a(\phi) = individual pulse shape$
- N_i = number of independent pulses summed ٠
- m_1 = intensity modulation index ≈ 1 ٠
- f_J = fraction jitter parameter = ϕ_{rms} / W ≈ 1

Gaussian shaped pulse:

$$\Delta t_{\rm J} = \frac{f_J W_i (1 + m_I^2)^{1/2}}{2(2N_i \ln 2)^{1/2}} \qquad N_6 = N_i \,/\, 10^6$$

$$\Delta t_{\rm J} = 0.28 \mu s \, W_{i,\rm ms} N_6^{-1/2} \left(\frac{f_J}{1/3}\right) \left(\frac{1+m_I^2}{2}\right)^{1/2}$$

Intensity

IPTA2010 Jim Cordes Leiden

Shannon et al. (2016)

SWINBURNE UNIVERSITY OF TECHNOLOGY

Red noise

- For young pulsars, the residuals are attributed to spin noise in the pulsar
- Torque fluctuations crust quakes superfluid-crust interactions
- Other pulsars: excess residuals are caused by orbital motion (planets, WD, NS), ISM variations, gravitational waves

Red noise

- Most young pulsars show red spin noise
 - Rotation instabilities?
 - Magnetospheric torque changes?
 - Open question: is this a generic property of MSPs too?
 - Can have similar spectral properties to GWB
- Solution: need to (at least) model the presence of red noise in datasets
- Triage bad pulsars kick them out of your PTA!

Quasiperiodic noise?

- Correlations between pulsar shape changes (effective width_ and pulse spin frequency derivative
- Magnetospheric origin for some pulsar timing noise?

Timing noise across the pulsar population

• Examined *every* report of TN in the literature 1980-2010

Blue: Magnetars

Black: Canonical (Normal) Pulsars (CPs)

- Red: MSPs
- Open symbols: upper limits
- Closed symbols: detections
- Implications: Spin noise will be present in MSPs if observed
- Over longer periods of time
- With higher timing precision

Timing noise across the pulsar population

Shannon & Cordes (2010)

• Examined *every* report of TN in the literature 1980-2010

Blue: Magnetars

Black: Canonical (Normal) Pulsars (CPs)

- Red: MSPs
- Open symbols: upper limits
- Closed symbols: detections
- Implications: Spin noise will be present in MSPs if observed
- Over longer periods of time
- With higher timing precision

SWIN BUR * NE *

Asteroid belt noise?

- Can an asteroid belt explain the noise in B1937+21?
- Low mass circumpulsar system (total mass ~ 0.05 Earth masses)
- 10 -200 objects: Cannot resolve periodicities of individual components.

Red noise from the interstellar medium

22

Largest red signal in MSP data sets: Variations in dispersion measure (DM). Proportional to λ^2 .

Need to remove **red signal** associated with DM variations without removing red signal associated with GWB

Include model of λ -independent noise in DM correction algorithm

Multi-path propagation

- Multi-path propagation causes broadening of pulse signal.
 - Proportional to λ^2 to $\lambda^{6.4}$
- Broadening is variable with time
- Strongest for distant pulsars observed at low frequencies
- Solution:
 - Observe at higher radio frequency
 - Explore mitigation methods like cyclic spectroscopy (Demorest 2012)

Biases in red-noise estimates

Assumption: observations contain only (instrumental) white noise and DM variations

Biases in red-noise estimates

Down-weight low frequency TOAs to account for scattering variations.

Correct for DM + Scattering (2)

Correct for DM + Scattering

Correct for DM

Only observe at high frequency

SWINBURNE UNIVERSITY OF TECHNOLOGY

Observations of scattering noise

- PSR J1643-1224
- See IPTA Noise paper (Lentati et al. 2016)!

Parkes residuals corrected for DM variations and scaled to 3.1 GHz

Blue: 10cm Black: 20cm Red: 50cm

26

Scattering noise in the MPTA

- Observe high DM pulsars
 - More likely subject to scattering effects
- Evidence for highly chromatic processes
 - v⁻⁴ to v^{<-6}
- Can end up with achromatic red noise if don't search for chromatic noise

(a) Models fit to an observing epoch scattered primarily by a chromatic scattering process. (b) Models fit to an observing epoch scattered primarily by a dispersion measure process.

Noise from pulse shape changes

- Assumption is that profile is not changing with time
- Need profile-domain timing methods

Profile distortions in J1713+0747

• What are the effects of smaller unmodelled distortions?

MeerKAT observations of J1713+0747

The stochastic background

Red power spectrum (more power at lowest frequency of GWs)

Characterised by a power-law amplitude A and a spectral index

Manifested in two ways:

- "Background noise" sky temperature in GWs
- Spatial correlations

Detecting the GWB

Other sources of noise can look like the background noise (e.g., pulsar spin noise)

Search for correlation in arrival times between multiple pulsars: Pulsar Timing Array

Correlation between pulsars expected to follow Hellings-Downs (1983) function

SWINBURNE UNIVERSITY OI TECHNOLOGY

Spin noise and gravitational waves

- Spin noise is present some MSPs
- Noise has time variability similar to that expected from GWB, making filtering difficult/impossible.
- For given spin properties, range of strengths of timing noise.
- Going to need to time a larger number of pulsars and then discard the ones that show timing noise.
- Don't have good model for spin noise: possible that background noise is simply pulsar noise (Zic et al. 2022)

SWIN

Cordes

8

Shannon

Summary: physical model for timing effects TABLE 1

Term	$Type^{a}$	Mean Part		Stochastic Part		Achromatic	Fluctuation Spectrum		PSR-PSR	Commonts
		Symbol	Value	Symbol	Value	Chromatic ^b	Chromatic ^{b} Signature ^{c}	Shape	COLLEGATION	Comments
Spin rate Magnetosphere:	А	$t_{ m spin}$	yr	$\Delta t_{\rm spin}$	$\mu s - s$	a	B, R	$f^{-4} - f^{-6}$	U	
Pulse Shape	Α, Τ	$t_{ m P}$	$\mu s - ms$			с			U	$\nu^{-0.3}$
Pulse Jitter	А, Т		·	$\Delta t_{ m J}$	$< \mu s - ms$	С	W, B	see text	\mathbf{U}	$\nu^{-0.3}$
Orbital	A	$t_{\rm orb}$	hr	$\Delta t_{\rm orb}$	< ms	a	L, R	$f^{-5/3}$	\mathbf{U}	
Dispersion	Α, Τ	$t_{\rm DM}$	$\lesssim s$	$\Delta t_{\rm DM}$	$\lesssim 100 \mu s$	\mathbf{C}	\mathbf{R}	$f^{-5/3}$	\mathbf{U}	ν^{-2}
Faraday Rotation Interstellar Turbulence	А, Т	$t_{ m RM}$	$\lesssim \mu { m s}$	$\Delta t_{ m RM}$	$\lesssim ns$	\mathbf{C}	R	$f^{-5/3}$	U	ν^{-3}
Pulse Broadening	Α, Τ	$t_{\rm PBF}$	ns-s	$\Delta t_{\rm PBF}$	< ns - ms	\mathbf{C}		complex	U	$\nu^{-4.4}$
DISS	Α, Τ			$\Delta t_{\delta PBF}$	$\lesssim \mu { m s}$	\mathbf{C}	W	flat	\mathbf{U}	$ u^{-1.6}$ - $ u^{-4.4}$
RISS	A, T	$t_{\rm PBF,RISS}$	$\lesssim \mu { m s}$	$\Delta t_{\delta PBF,RISS}$	$\lesssim \mu s$	\mathbf{C}	\mathbf{R}	$f^{-7/3}$	\mathbf{U}	?
Angle of Arrival	Α, Τ			$\Delta t_{ m AOA}$	$\lesssim \mu { m s}$	\mathbf{C}	R	$f^{-2/3}$	U	ν^{-4}
Angle of Arrival	Α, Τ			$\Delta t_{\rm AOA,SSBC}$	$\lesssim \mu { m s}$	\mathbf{C}	\mathbf{R}	$f^{-1/3}$	U	ν^{-2}
Multipath averaging	Α, Τ			$\Delta t_{\mathrm{DM},\nu}$	$\lesssim 0.1 \mu s$	\mathbf{C}	R	complex	U	$\nu^{-23/6}$
Astrometric ^e	Т	t_{AST}		$\Delta t_{\rm AST}$		\mathbf{a}			\mathbf{U}	
Newtonian solar perturbations	Т			$\Delta t_{\mathrm{Newt},\mathrm{SSBC}}$		\mathbf{a}			\mathbf{C}	dipolar
Radiometer Noise	Т			$\Delta t_{\rm S/N}$	$< \mu s - ms$	$c \rightarrow C$	W	$_{\mathrm{flat}}$	\mathbf{U}	$\nu^0 ightarrow \nu^{-2.7}$
Polarization	Т			$\Delta t_{\rm pol}$		С	W	flat	\mathbf{U}	
Gravitational Lensing	Α	$t_{ m GL}$		$\Delta t_{ m GL}$		\mathbf{a}			\mathbf{U}	Episodic
Cosmic Strings	А	$t_{\rm STR}$				a	R	$f^{-16/3}$	U	Red noise if multiple events

 \mathbf{a}

Selected Timing Effects

 $\lesssim 100 \text{ ns}$

 $\Delta t_{\rm GW}$

Gravitational Waves

 $^{a}A = astrophysical, T = timing estimation error$

 $^{b}a = achromatic, C = strongly chromatic, c = weakly chromatic$

^cFluctuation spectrum properties: R = red, W = white, B = bandpass, L = lowpass

 ^{d}U = uncorrelated between different pulsar lines of sight, C = correlated

А

^eIncludes clock errors and Earth spin variations

Cordes & Shannon (2010, arXiv:1010.3785)

C, U

Two terms

 $f^{-13/3}$

R

Signal model for pulsar timing

- TOAs = timing model + white noise + red noise
- Timing model = deterministic terms
- Red noise = (gravitational waves) + spin noise + ISM noise + ...
- White noise = radiometer noise + pulse jitter + instrumental effects
- Can fit/marginalize deterministic terms
- Want to minimize stochastic contributions relative to GWs
- Need to incorporate stochastic contributions into likelihood function

Example: characterizing red noise

Three data sets: IPTA – first data release NANOGrav 9 year data set PPTA – same 9 year as NANOGrav

"Corner plots"

Red noise in IPTA (black),PPTA-dr2 (red) and NANOGrav datasets (blue)

-----OzGrav-

Interpreting results of timing model

- Visual inspection?
 - Do the residuals look weird (sinusoidal trends vs time or orbital phase)
- How good is the fit? How good is the model?
- Are parameters significant? Do their values make sense?
- Do parameters improve the fit/increase the evidence?
- Are parameters consistent?
 - Geometric parallax / vs Change in orbital period
 - Consistent with other observatories, IPTA

Red noise in IPTA (black),PPTA-dr2 (red) and NANOGrav datasets (blue)

Ryan's recipe for precision timing (2023)

- Use tempo2 graphical plugin to inspect residuals
 - "Bailes Method" -> remove the low S/N TOAs and see what is left
 - Sort by frequency/flag by backend/serially/, etc.
 - Average data together in time/frequency to see what low structure exist
- Use maximum-likelihood methods to explore data
 - What are the important parameters?
 - What are the important noise sources?
- Use Bayesian methods to explore the models (temponest/enterprise)
 - How are parameters covariant?
 - Which parameters/models are supported?
 - Are parameters physics
- Test Bayesian models by subtracting maximum-likelihood noise models from data
 - Do residuals have Gaussian distribution?

Summary

- A variety of noise processes could be present in pulsar timing data sets
- Achromatic red noise could arise from the pulsar or from gravitational waves
- Chromatic red noise from the interstellar medium
- Having a good model for noise necessary for making the best use of pulsars as tools